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The Gaussian smoothing method is shown to have a wide transition zone around the cut-
off frequency selected to filter a given dataset. We proposed two iterative Gaussian
smoothing methods to tighten the transition zone: one being approximately diffusive and
the other being strictly diffusive. The first version smoothes repeatedly the remaining
high-frequency parts and the second version requires an additional step to further
smooth the resulting smoothed response in each of the smoothing operation. Based on
the choice of the criterion for accuracy, the smoothing factor and the number of
iterations are derived for an infinite data length in both methods. By contrast, for a
finite-length data string, results of the interior points (sufficiently away from the two
endpoints) obtained by both methods can be shown to exhibit an approximate diffusive
property. The upper bound of the distance affected by the error propagation inward due
to the lack of data beyond the two ends is numerically estimated. Numerical experiments
also show that results of employing the iterative Gaussian smoothing method are almost
the same as those obtained by the strict diffusive version, except that the error
propagation distance induced by the latter is slightly deeper than that of the former. The
proposed method has been successfully applied to decompose the wave formation of a
number of test cases including two sets of real experimental data.

Keywords: iterative Gaussian smoothing method; diffusive filter on time domain;
time-series data
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1. Introduction

The least-squares method is widely used in many mathematical, physical and
engineering applications (Marr & Hildreth 1980; Lancaster & Salkauskas 1986;
Jeng 2000; Fasshauer 2002; Liew et al. 2002). When the dataset to be analysed is
complicated, a lower degree polynomial approximation is not sufficient to
capture the profile trends and a high-degree polynomial is frequently suggested.
However, a high-degree polynomial approximation is more complicated to
implement and it can sometimes give rise to undesirable oscillations.
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If the least-squares method is defined locally at every point, the method is
called the moving least-squares method (Lancaster & Salkauskas 1986). The
method can be applied in both discrete and continuous datasets, but in this work
we shall consider only the former cases. Moreover, the moving least-squares
methods can be used in conjunction with a weighting kernel of Gaussian
exponential function to eliminate unnecessary spurious oscillation (Marr &
Hildreth 1980; Mackworth & Mokhtarian 1984; Mokhtarian & Mackworth 1986;
Lowe 1989; Weiss 1994; Jeng 2000; Fasshauer 2002; Liew et al. 2002; Jeng &
Cheng 2004). If the approximated polynomial is of the zeroth degree, the method
becomes the conventional Gaussian smoothing method (Mackworth &
Mokhtarian 1984; Mokhtarian & Mackworth 1986; Lowe 1989). Among many
available weighting kernels for the zeroth-order moving least-squares method,
the Gaussian exponential function has the following two useful properties.
First, by a careful selection of an appropriate smoothing factor, s, as defined
in the Gaussian function exp [Kx2/(2s2)], there exists a desired threshold fre-
quency above which the waveforms can be effectively filtered out. Second,
the relation between the original data and resulting smoothed data is akin to
that observed between the initial temperature distribution and the exact
solution at a corresponding instant of the equation for unsteady one-dimensional
heat conduction (Carslaw & Jaeger 1957). In other words, the Gaussian
smoothing method is closely related to the spontaneous diffusion process of
nature and therefore obeys the second law of thermodynamics (Morse &
Feshbach 1953).

The signal decomposition using the wavelet transform has been successfully
applied to many fields (Hess-Nielsen & Wickerhauser 1996; Goswami & Chan
1999; Sonka et al. 1999; Gonzalez & Woods 2002; Misiti et al. 2007). The wavelet
transform employs a weighting kernel function defined within a finite interval to
resolve the local spectrum. Although many filters using the wavelet kernels
perform very well, there is no evidence to show that they are non-diffusive. The
other class of signal decomposition involves the Laplacian and Gaussian
pyramids that are widely employed in the field of image processing (Burt &
Adelson 1983; Sonka et al. 1999; Gonzalez & Woods 2002). While these methods
aim to provide a significant data reduction for imagining procession, it is possible
that the present approach can be used as a basic tool for the data reduction. In
addition, there are a number of other methods proposed to decompose a time-
series dataset consisting of many waves with different and variable wavelengths;
for example, the matrix pencil method (Hua & Sarkar 1989; Ruscio 1997) and
empirical mode decomposition method (Huang et al. 1998, 1999). However,
except for the wavelet filters, a complete discussion of these topics is not within
the scope of the present paper.

In §2a, the Gaussian smoothing method in terms of the zeroth-order moving
least-squares method is illustrated. The diffusive property and transition zone of
the resulting response are also discussed. In §2b,c, two iterative Gaussian
smoothing methods are proposed, one with and one without strict diffusive
properties, respectively. Their resulting smoothed part, which is defined as the
difference between the original data and final high-frequency part, is shown to
have a narrower transition zone than that obtained by employing the original
Gaussian smoothing method. The applications of these iterative Gaussian
smoothing methods for discrete finite-length data string are discussed in §2d.
Proc. R. Soc. A



3A diffusive sharp filter
Error estimations by applying the smoothing methods discussed in §2b to
finite-length data string are also shown in §2d. A list of the iterative procedure is
shown in §2e. Finally, numerical tests of iterative Gaussian methods for a
number of cases are included in §3.
2. Theoretical development

(a ) Gaussian smoothing method for a discrete data string of infinite range

Consider a set of infinite data (xi , yi), xiZiDx, KN!i!N, to be approximated
by a polynomial. The error targeting function of the weighted moving least-
squares method is defined at every data point xj, KN!j!N as

Ij Z
XN
iZKN

exp K
ðxiK xjÞ2

2s2

" #
yiK

XM
mZ0

Am;jðxiK xjÞ2
" #2

: ð2:1Þ

The moving least-squares method requires that Ij is a minimum with respect to
A0, j, ., AM, j. Thus, a set of simultaneous algebraic equations will have to be
solved at every point xZxj (Marr & Hildreth 1980; Jeng 2000; Fasshauer 2002;
Liew et al. 2002). If the polynomial contains only the zero-degree term (MZ0),
the result becomes the well-known Gaussian smoothing method (Mackworth &
Mokhtarian 1984; Mokhtarian & Mackworth 1986; Lowe 1989), which takes the
following form explicitly:

�yj Z
1

k

XN
iZKN

exp K
ðxiK xjÞ2

2s2

" #
yi; KN! j!N;

k Z
XN
iZKN

exp K
ðxiK xjÞ2

2s2

" #
:

9>>>>>=
>>>>>;

ð2:2Þ

As Dx/0, k can be replaced by the factor of
ffiffiffiffiffiffi
2p

p
s=Dx and the above formula

becomes the explicit form shown in Marr & Hildreth (1980), Mackworth &
Mokhtarian (1984), Mokhtarian & Mackworth (1986), Lowe (1989), Weiss (1994),
Jeng (2000), Fasshauer (2002) and Liew et al. (2002).

Assume yj can be expressed in the following discrete form:

yj Z
XN
lZ0

cl cos
2pxj
ll

Cdl sin
2pxj
ll

� �
; KN! j!N; ð2:3Þ

where ll is the wavelength of the l th mode. For a finite data string with a period
T, llZT/l, the upper limit of the summation is a finite integer and equation (2.3)
is just a discrete Fourier series expansion. It should be pointed out that although
we use equation (2.3) as an example in the following discussion, it is not always
possible to identify such a period, T, for a real data string because not all data
are periodical by their nature. Therefore, filters defined on the spectral domain
may introduce both amplitude attenuation and phase error because it may not be
possible to filter a real dataset on the spectral domain precisely. By contrast, it
Proc. R. Soc. A
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will be shown that the proposed filtering procedure, which is operated on the
time domain, works very well without knowing the exact form of the spectrum,
involving a prior knowledge of the values of cl’s, dl’s and ll’s.

After applying the Gaussian smoothing method, it can be shown that the
response is

�yj Z
XN
lZ0

aðs; llÞ cl cos
2pxj
ll

Cdl sin
2pxj
ll

� �
; ð2:4Þ

where

aðs; llÞZ
1

k

XN
iZKN

exp K
x 2
i

2s2

� �
cos

2pxi
ll

: ð2:5Þ

By approximating the summation over all i’s of equation (2.5) with a proper
integration formula and making use of the definition of k, equation (2.2), one can
deduce the following relationship:

aðs; llÞz

ÐN
KNexp K x 2

2s2

h i
cos 2px

ll
dxCOðDx2Þ

h i
ÐN
KNexp K x 2

2s2

h i
dxCOðDx2Þ

h i
zexp ½K2p2s2=l2l �COðDx2Þ; ð2:6Þ

which satisfies the following inequalities:

G3%aðs; llÞ%1; ð2:7Þ
where 3 is a positive machine round-off error. The second inequality of equation
(2.7) appears to be obvious because a cosine function is always less than 1. The
first inequality of equation (2.7) can be verified only by extensive numerical tests.
It reflects the possibility that, for modes having s[ll, the exponential function
of equation (2.6) is a positive value close to 0 but the error term, O(Dx2), may
take a small negative value.

If the data are continuous, the diffusive property of the Gaussian smoothing
method is

0%aðs; llÞ%1: ð2:8Þ
After applying the smoothing step to the low-frequency modes, the original yi can
be cast into a sum of the smooth part �yi and the high-frequency part y 0

i. This
implies that the smoothing operation can be considered as a filter. An ideal filter
is infinitely sharp such that, there exists a cut-off wavelength, lc, whereby �yi does
not contain any Fourier mode whose wavelength l is less than lc and y 0

i does not
have any mode whose wavelength l is greater than lc. Unfortunately, most time-
domain filter operations are not ideal and therefore there exists an open interval,
l1!lc!l2, where one cannot separate �yi and y 0

i into two distinct regions. This
open interval is referred to as the transition zone of the filter. Considering the
Gaussian smoothing method as an example, one may identify a region,
3a!aðs; ljÞ!1K 3a, being the corresponding transition zone, where 3a is a
small positive constant. Unfortunately, as shown in figure 1a, the transition zone
of the Gaussian smoothing can be too wide to be useful. A careful inspection
Proc. R. Soc. A
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Figure 1. (a) The attenuation factor aðs; llÞ versus l/s; and (b) the original (squares, lZ1) and
smoothed data (triangles, sZ0.2).
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of this figure reveals that

aðs; ljÞ/0; if lj!0:6s;

aðs; ljÞ/1; if ljO40s;

3a!a!1K3a; if 0:6s%lj%40s:

9>=
>; ð2:9Þ

This implies that, when sO1.7l, the wave can be almost completely filtered;
when s!0.025l, the wave can be completely retained; when s has a value in
between 1.7l and 0.025l, it is a transition region where the wave can only be
partially retained (or filtered). For example, figure 1b shows that the response of
a single sine function with lZ1 via the Gaussian smoothing method with sZ0.2
has led to a smoothed profile showing a(0.2, 1)z0.45404. Unfortunately, the
transition zone of the Gaussian smoothing method is rather wide, and it is only
useful to decompose two wave forms with a wavelength ratio larger than 40 : 0.6.
This makes the method impractical for filtering or decomposing any real data. In
order to derive a smoothing method having a narrower transition zone, the
following iterative scheme is proposed.
(b ) Iterative Gaussian smoothing method for a discrete data string
of infinite range

By denoting S{yj} as an operator for applying the Gaussian smoothing method
to yj and renaming �yj on the l.h.s. of equation (2.2) as �yj;1, where the subscript 1
denotes the smoothed part of the first cycle, one yields

�yj;1 Z SfyjgZ
XN
lZ0

aðs; llÞ cl cos
2pxj
ll

Cdl sin
2pxj
ll

" #
; KN! j!N;

y 0j;1 Z yjK�yj Z
XN
lZ0

ð1Kaðs; llÞÞ cl cos
2pxj
ll

Cdl sin
2pxj
ll

" #
;

9>>>>>=
>>>>>;

ð2:10Þ
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where y 0
j;1 is the remaining high-frequency part of the first cycle. Likewise, the

remaininghigh-frequency part is smoothed again to obtain yet again the smooth and
high-frequency parts of the second cycle, say �yj;2 and y 0

j;2, respectively. Repeating
the procedure up tomth cycle, the corresponding smooth and high-frequency parts
are, respectively,

�yj;mZSfy 0
j;mK1gZ

XN
lZ0

aðs;llÞð1Kaðs;llÞÞmK1 cl cos
2pxj
ll

Cdl sin
2pxj
ll

" #
;

y0j;mZ
XN
lZ0

ð1Kaðs;llÞÞm cl cos
2pxj
ll

Cdl sin
2pxj
ll

" #
;

9>>>>>=
>>>>>;

ð2:11Þ

The accumulated smooth parts, �yjðmÞZ�yj;1C/C�yj;m, are related to the final high-

frequency part through the following relation:

�yjðmÞZðyjKy 0
j;1ÞCðy 0

j;1Ky 0
j;2ÞCðy 0

j;2Ky 0
j;3ÞC/Cðy 0

j;mK1Ky 0
j;mÞZyjKy 0

j;m:

ð2:12Þ
For convenience, we rewrite the high-frequency part of equation (2.11) as

y 0
j;mZ

XN
lZ0

bðs;ll ;mÞ cl cos
2pxj
ll

Cdl sin
2pxj
ll

� �
; ð2:13Þ

where

bðs;ll ;mÞZð1Kaðs;llÞÞm: ð2:14Þ

It can be shown that

0%bðs;ll ;mÞ%1Gm3; csO0: ð2:15Þ

Figure 2 shows the variation of 1Kbðs;ll ;mÞ with respect to the ratio ll=s for a
range of iteration steps, m. The line with mZ1 shows the attenuation factor of the
low-frequency part generated by applying the Gaussian smoothing method once.
As the iteration step, m, increases, the whole transition zone shifts to the left and
its width becomes narrower and narrower. Since the lower bound of aðs;llÞ is G3,
as shown in equation (2.7), the upper bound of bðs;ll ;mÞ will have a value of 1G�3
where Km3/�3/m3. This may cause some problems that the high-frequency
wave may manifest itself during iterations and hence lead to a divergence of the
filtering procedure. We shall discuss a fix to this problem in §2b.

Suppose we applied the iterative Gaussian smoothing method to a data string
having two distinct wavelengths, l1 and l2, where l1Ol2. If we would like to
retain l1-wave while filter l2-wave, it is intuitive to require that

½1Kaðs; l1Þ�mz 1Kexp K2p2s2=l21
� �� 	m

Z 1Kd;

½1Kaðs; l2Þ�mz 1Kexp K2p2s2=l22
� �� 	m

Z d;

)
ð2:16Þ

where the parameter d can take an arbitrarily small value. The solution of this
set of simultaneous equations will give the value of the smoothing factor s and
the number of cycles, m, required to perform the decomposition of the two waves.
Proc. R. Soc. A
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Figure 3. The parameters of iterative Gaussian smoothing method for several values of d of equation
(2.16): (a) s/l1 versus l2/l1 and (b) log (m) versus l2/l1 for both versions. Squares, 0.01–0.99;
up triangles, 0.001–0.999; down triangles; 0.0001–0.9999; diamonds, 0.00001–0.99999; circles;
0.000001–0.999999.

1.0

0.5

0

0 1 2 3

Figure 2. The attenuation factor of the iterative Gaussian smoothing method, 1KbZ1Kð1KaÞm
versus single smoothing method, l/s for several m’s in a cycle. Heavy solid line, mZ1; long-dashed
line, mZ10; dash-dotted line, mZ100; dashed line, mZ1000; dotted line, mZ10 000.
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A plot of these solutions is depicted in figure 3a,b, for the value of s/l1 and m,
respectively. In §3 we will show how to apply the iterative Gaussian smoothing
method to separate two distinct waves.

Note that, as the value of l2/l1 becomes smaller than 2 (whose corresponding
parameters are dZ0.001, s/l1z0.7715 and mz127), the required number
of iteration cycles increases exponentially. For example, when l2/l1Z1.5, 8134
iteration steps are needed to separate the two waves while when l2/l1Z1.25,
mz4 615 005. These numbers can also be affected by the choice of the value of d.
Proc. R. Soc. A



Table 1. Solutions of the required parameters of equation (2.16) for l2/l1Z2.

dZ0.01 dZ0.001 dZ0.0001 dZ0.00001 dZ0.000001

ms 33 127 410 1199 3306
ss/l1

a 0.639642 0.771546 0.878266 0.970770 1.053768
md 33 127 410 1199 3306
sd/l1

a 0.452295 0.545565 0.621028 0.686438 0.745127

aThe superscript of ( )s denotes the iterative Gaussian smoothing method, while ( )d denotes the
strict diffusive iterative Gaussian smoothing method.

Y.-N. Jeng et al.8
As it can be seen from table 1, if the accuracy increases by an order of magnitude,
the required value of s/l1 increases slightly while the iteration steps m increase
approximately three to four orders of magnitude.

It is interesting to see that the underlying principle of the proposed iteration
method is not very different from the classical iteration methods. For example,
the filtering is operated on the smooth part in the current method while in the
Ray & Ray iterative Gaussian scheme (Ray & Ray 1995) and the Gaussian
pyramid (Burt & Adelson 1983; Sonka et al. 1999; Gonzalez & Woods 2002;
Misiti et al. 2007), it is the high-frequency part that is repeatedly smoothed.
Owing to the fact that the result of applying the Gaussian smoothing method can
be looked upon as the exact solution of the one-dimensional time-dependent heat
conduction problem, the result of one smoothing step can be interpreted as the
corresponding solution of the one-dimensional time-dependent heat conduction
problem at the same time instant. The method is therefore akin to a time-
marching scheme for solving a partial differential equation by repeatedly
reducing the residue to zero in a sequential manner.
(c ) An iterative Gaussian smoothing method with a strict diffusive property

As shown in equation (2.15), the upper bound of bðs; ll ;mÞ has a value of
1Gm3 which may cause some problems. In order to make the iterative procedure
satisfy a strict diffusive property such that 0%bðs; ll ;mÞ%1, the Gaussian
smoothing method is employed to smooth �yj of equation (2.2) once more and
denotes the resulting smoothed part as �yj;1,

�yj;1 ZS2fyjgZ
XN
lZ0

a2ðs; llÞ cl cos
2pxj
ll

Cdl sin
2pxj
ll

" #
; KN! j!N;

y 0
j;1 Z yjK�yj;1 Z

XN
lZ0

ð1Ka2ðs; llÞÞ cl cos
2pxj
ll

Cdl sin
2pxj
ll

" #
;

9>>>>>=
>>>>>;

ð2:17Þ

where S 2{yj} denotes the application of the Gaussian smoothing method, firstly
to yj and then to �yj once again. The mth cycle’s results are

�yj;m ZS 2 y 0
j;mK1

� �
Z

XN
lZ0

a2ðs; llÞð1Ka2ðs; llÞÞmK1 cl cos
2pxj
ll

Cdl sin
2pxj
ll

� �
;
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y 0
j;m Z

XN
lZ0

ð1Ka2ðs; llÞÞm cl cos
2pxj
ll

Cdl sin
2pxj
ll

" #

Z
XN
lZ0

bðs; ll ;mÞ cl cos
2pxj
ll

Cdl sin
2pxj
ll

" #
; KN! j!N; mZ 1; 2;. :

ð2:18Þ

Owing to the strict non-negative property of a2, the factor bðs; ll ;mÞ satisfies

0%bðs; ll ;mÞZ 1Ka2ðs; llÞ
� 	m

%1: ð2:19Þ

In other words, this iterative procedure is a strict diffusive smoothing method,
and the corresponding variation of this new attenuation factor, 1Kbðs; ll ;mÞ,
with respect to l/s is exactly the same as the one shown in figure 2, provided
that s is replaced by s=

ffiffiffi
2

p
.

The estimated smoothing factor sd and iteration md (the subscript ‘d’ stands
for the double smoothing that leads to the strict diffusive method) are solved
from equation (2.16) with the factor a(s, ll) replaced by a2(s, ll) and the factor 2
of the exponential function replaced by 4, respectively. The corresponding
parameters sd=

ffiffiffi
2

p
and md for different values of d are exactly the same as shown

in figure 3a,b, respectively. It is noted that the required computing time of
employing the strict diffusive iterative Gaussian smoothing method is twice that
for the iterative Gaussian smoothing method.
(d ) Filtering a discrete data string with finite length

In practice, data are not periodic and therefore they cannot be interpreted as
infinite data strings. The extension of the two proposed iterative Gaussian
smoothing methods to a data string of finite length is discussed in this section.

For a finite-range data string, say (xj, yj), jZ0, 1, 2,., n, the corresponding
discrete Fourier expansion is

yj Z
XnK1

lZ0

cl cos
2pxj
ll

Cdl sin
2pxj
ll

� �
; j Z 0; 1; 2;.;nK1: ð2:20Þ

The application of the Gaussian smoothing method, which is the zeroth-order
moving least-squares method for a finite data length, will give

�yj Z
1
�kj

XnK1

iZ0

exp ðKðxiKxjÞ2=ð2s2ÞÞ
XnK1

lZ0

cl cos
2pxi
ll

Cdl sin
2pxi
ll

" #
;

�kj Z
XnK1

iZ0

exp ðKðxiKxjÞ2=ð2s2ÞÞ:

9>>>>>=
>>>>>;

ð2:21Þ

Unlike k of equation (2.2), �kj is not a constant but changes with respect to xj now.
Following the similar transform to obtain equation (2.4), the following relations
Proc. R. Soc. A
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are obtained:

�yj Z
1
�kj

XnK1

lZ0

cl cos
2pxj
ll

Cdl sin
2pxj
ll

� �XnK1

iZ0

exp ðKðxiK xjÞ2=ð2s2ÞÞ cos
2pðxiK xjÞ

ll

(

C dl cos
2pxj
ll

K cl sin
2pxj
ll

� �XnK1

iZ0

exp ðKðxiK xjÞ2=ð2s2ÞÞ sin
2pðxiK xjÞ

ll

)

Z
1
�kj

XnK1

lZ0

cl cos
2pxj
ll

Cdl sin
2pxj
ll

� � XnK1Kj

iZKj

exp ðKx2i =ð2s2ÞÞ cos
2pxi
ll

(

C dl cos
2pxj
ll

K cl sin
2pxj
ll

� � XnK1Kj

iZKj

exp ðKx2i =ð2s2ÞÞ sin
2pxi
ll

)
: ð2:22Þ

If xmO5s where mZmin ðj;nK1KjÞ, the magnitude of the Gaussian functions,
exp ½Kx2m=ð2s2Þ�, is of the order of O(K6) and is of no significance and hence
equation (2.22) can be considered to be unaffected by the finite-length
assumption of the data

1
�kj

XnK1Kj

iZKj

exp ðKx2i =ð2s2ÞÞ cos
2pxi
ll

z
1

k

XN
iZKN

exp ðKx 2
i =ð2s2ÞÞ cos

2pxi
ll

Z aðs; llÞ;

XnK1Kj

iZKj

exp ðKx2i =ð2s2ÞÞ sin
2pxi
ll

z
XN
iZKN

exp ðKx2i =ð2s2ÞÞ sin
2pxi
ll

Z 0: ð2:23Þ

As a result, equation (2.22) can be written as

�yjz
XN
lZ0

aðs; llÞ cl cos
2pxj
ll

Cdl sin
2pxj
ll

� �
: ð2:24Þ

On the other hand when data points are close to the boundary, the upper bound
of the difference between smoothing for finite data points and infinite data points,
�yj and �yN

j , respectively, can be estimated as

�yjK�yN
j



 

Z 1
�kj

Xn
iZ0

exp K
ðiKjÞ2ðDxÞ2

2s2

� �
yiK

1

j

XN
iZKN

exp K
ðiKjÞ2ðDxÞ2

2s2

� �
yi














%
ymax

�kj
FðKjDxÞC 1

�kj
K

1

k












k�yNj z 2FðKjDxÞ

1KFðKjDxÞ ymax;1; ð2:25Þ

where F is the error function and ymax;1Zmaxjz0½�ymax; �y
N
j � in which �ymaxZmaxiz0

½�yi!0� and the index, iz0, implies the points in the vicinity of region where
exp ½KðiKjÞ2ðDxÞ2=2s2�z1.
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Figure 4. The upper bound estimations of error with respect to iteration cycles.

Table 2. Estimated contaminated distances with respect to different accuracy level of equation (2.16).

m dZ0.01 dZ0.001 dZ0.00001 dZ0.000001

x sfade=s 1 2.35 3.11 4.28 5.22

xdface=s 1 3.39 4.41 6.05 7.37

x sfade=s 2 3.39 4.41 6.05 7.37

xdface=s 2 4.91 6.33 8.60 10.43

x sfade=s 10 7.99 10.20 13.73 16.60

xdface=s 10 11.49 14.61 19.57 23.61

x sfade=s 50 18.45 23.37 31.20 37.57

xdface=s 50 26.31 33.26 44.33 53.32

x sfade=s 126 29.71 37.55 50.02 60.15

xdface=s 126 42.25 53.32 70.95 85.28

11A diffusive sharp filter
When the iterative Gaussian smoothing method is employed, the error
estimation at the m-step can be approximated by the following recurrent
equation:

ej;m Z
2FðKjDxÞ

1KFðKjDxÞ ymax;m C
1
�kj

Xn
iZ0

ej;mK1 exp K
ðiKjÞ2ðDxÞ2

2s2

� �
; ð2:26Þ

where ej,mK1 is the estimated error generated in the previous iteration cycle and
ej,0Z0 initially. The resulting upper bound distributions with respect to iteration
cycles are shown in figure 4. For the diffusive iterative Gaussian smoothing
method, the error bound estimation is exactly the same provided that the
iteration number m in equation (2.26) is interpreted as the accumulated number
of smoothing. The penetration distances for different error levels estimated for
both the approximate and strict diffusive methods are depicted in figure 4 and
table 2. It can be seen that the penetration distance increases with the increasing
Proc. R. Soc. A
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number of iterations in an approximately exponential manner. It is noted that
figure 4 and table 2 give the maximum possible errors and therefore the
estimated distance of influence can be much larger than real numerical tests.
This exercise only serves to give an indication of how the error propagates
with iterations.

(e ) The algorithm for the iterative smoothing procedure

The algorithm for the proposed iterative procedure can be summarized as
follows.

(i) Select the scheme of the iterative Gaussian smoothing method—be it a
diffusive or a strict diffusive procedure.

(ii) Determine the transition zone, say l1 and l2. It is recommended to allow
the transition zone to satisfy l2/l1R2 as discussed in §2b.

(iii) Determine values of s and m by solving equation (2.16). If the strict
diffusive version is employed, the resulting s is replaced by s=

ffiffiffi
2

p
.

(iv) Repeatedly apply the corresponding iterative method with the parameter
s for m iteration cycles.

(v) The resulting high-frequency part is the desired high-frequency part and
the difference between the original data and the high-frequency part
becomes the smooth part.

3. Results and discussions

In order to examine the proposed iteration procedure, the following composite
waveform is made up of two independent waves having wavelengths 0.5 and 0.25,
respectively:

yðxÞZ sin ð4pxÞCsin ð8pxÞ: ð3:1Þ

If dZ0.001 and the iterative Gaussian smoothing method are chosen, table 1
suggests that the critical s and m are 0.193 and 127, respectively. In order to
simulate the infinite-domain limit, the calculation is taken in the range of 0%xj%10
andK10%xi%20 with DxZ0.005 where xi and xj are defined in equations (2.1) and
(2.2), respectively. After all the data at xj’s are evaluated in every cycle, they are
periodically mapped to those points xi in the range ofK10!xi!0 and 10!xi!20,
respectively. These conditions ensure that exp ½KðxiK xjÞ2=ð2s2Þ�!10K50 for all
jxiKxjjO10 and 0%xj%10 simultaneously. Figure 5 shows the resulting accumu-
lated smooth part of the 1st, 5th, 10th, 20th and 50th iteration cycles. It is
clear that the smooth part gradually approaches the original long-wave mode.
The converging history is shown as the dotted line in figure 6a, which
shows an exponential decay of the [2 error and confirms the estimation of the
attenuation factor a(s, ll) in equation (2.6). The final [2 error is 0.0009794 while
the [N error of 0.001726 shows that the maximum error will be slightly larger
than dZ0.001. Figure 6a also shows the convergent histories for several different
d values, all of which show similar exponential convergent behaviour. In figure 6b,
there is a solid line that shows a non-convergent behaviour with DxZ1/7
and all the other parameters are the same as that of the dotted line (fine-grid
solution). Numerical experiments show that if Dx!1/8, the convergent history
Proc. R. Soc. A
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Figure 5. Original data (dashed line) and results of applying the iterative Gaussian smoothing
method of 1 (squares, y–y 0), 5 (up triangles, y–y 0), 10 (down triangles, y–y0), 20 (circles, y–y0) and
50 (dashed lines, y–y0) cycles, a single smoothing per iteration cycle is employed and other
parameters are: dZ0.001, sZ0.193, mZ127. Original smooth part, solid line.
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Figure 6. Convergent histories for infinite-domain data (log (square error) versus iteration number
of applying single Gaussian smoothing in a cycle) for (a) several criteria d (solid line, 0.01–0.99;
dotted line, 0.001–0.999; dashed line, 0.0001–0.9999; long dashed line, 0.00001–0.99999; dot-
dashed line, 0.000001–0.999999) and (b) dZ0.001 with different grid sizes (dotted line, 200–4000
points for 0!x!20; solid line, 140 points for 0!x!20).

13A diffusive sharp filter
is almost the same as that of the dotted line of figure 6b. It seems that a
coarse resolution of the original data will affect the accuracy of the wave
decomposition procedure.

If the strict diffusive iterative Gaussian smoothing method is chosen, keeping
all the rest parameters except sZ0.13647, the corresponding result coincides
with that of figure 5 and the converging history is almost equal to the dotted
line shown in figure 6a. The final [2 error is 0.0009795 and the [N error is
0.001726, which are almost equal to that of the single smoothing per cycle.
Table 3 shows the comparison of both versions for different values of d,
provided that the grid size is fine enough. It seems that both the [2 and [N
Proc. R. Soc. A



Table 3. Comparison between the iterative Gaussian smoothing method and strict diffusive
iterative Gaussian smoothing method for l2/l1Z2.

dZ0.01 dZ0.001 dZ0.0001 dZ0.00001 dZ0.000001

Dx s 0.01 0.005 0.005 0.0025 0.00125
[ s2 error 0.00929 0.0009795 0.00009879 0.000009954 0.000001001
[ sN error 0.01640 0.001726 0.0001742 0.00001753 0.000001767
Dxd 0.01 0.005 0.005 0.0025 0.00125

[ d2 error 0.00929 0.0009794 0.00009879 0.000009954 0.000001002

[ dN error 0.01640 0.001726 0.0001741 0.00001753 0.000001770
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Figure 7. Original data and results of applying the iterative smoothing methods to a finite data
string and detailed plots around the left end of xz0 are shown: (a) the iterative single Gaussian
smoothing method (sZ0.193; mZ127) and (b) the strict diffusive iterative Gaussian smoothing
method (sZ0.13647; mZ127). Long-dashed line, original data; solid line, original smooth part;
squares, 20th cycle y–y0; circles, 50th cycle y–y 0.

Y.-N. Jeng et al.14
errors are the same for most d’s, except a small difference for the case with
dZ0.000001. Besides, all the [2 and [N errors are also approximately equal to
the corresponding values of d.

Now the finite-domain wave decomposition for the waveform of equation (3.1)
is examined. The data range of 0%xi , xj%20 is employed where data in the
ranges of x!0 and xO20 are not considered. Figure 7a,b shows detailed results of
20th and 50th cycles for both versions of employing the iterative Gaussian
smoothing method (sZ0.193) and diffusive version (sZ0.13746), respectively,
where other parameters use values of DxZ0.005 dZ0.001, mZ127, etc.
Obviously, except at the region around the endpoint where xZ0, both solutions
coincide with each other. The corresponding final error plots of two versions are
plotted in figure 8a,b, respectively. Again, their differences are insignificantly
small in most regions.

Table 4 shows the region affected by the endpoints for different values of d. It
is clear that the diffusive iterative Gaussian smoothing method results in a
slightly deeper influence region (for cases with dZ0.01–0.00001 with moderate
Proc. R. Soc. A



0

(a) (b)

0 1 2 3 4 5 6 7 8 9 100 1 2 3 4 5 6 7 8 9 10

–5

lo
g 

(e
rr

or
)

Figure 8. Final log-error plots of applying the iterative smoothing methods to a finite data string
and detailed plots around the left end of xz0 are shown: (a) the iterative Gaussian smoothing
method (sZ0.193; mZ127, with and without random number. The 127th cycle error, 0.001C0.999
criteria; xtZ20, 4000 points, single smoothing in a cycle) and (b) the strict diffusive iterative
Gaussian smoothing method (sZ0.13647; mZ127, with and without random number. The 127th
cycle error, 0.001C0.999 criteria; xtZ20, 4000 points, double smoothing in a cycle).

Table 4. Comparison of the ranges affected by the boundary at the two ends calculated by the
iterative Gaussian smoothing method and the strict diffusive iterative Gaussian smoothing method
for l2/l1Z2.

dZ0.01 dZ0.001 dZ0.0001 dZ0.00001 dZ0.000001

x sfade=sz 1.2 2.3 4.0 5.0 6.6

xdfade=sz 1.2 2.5 4.2 5.4 8

15A diffusive sharp filter
accuracy) than that using the iterative Gaussian smoothing method. For the
highly accurate one with dZ0.000001, the diffusive version is approximately 20%
deeper than the approximate diffusive version.

The second test case adds random number to the function of equation (3.1) so
that it becomes

yðxÞZ sin ð4pxÞCsin ð8pxÞC0:5ðr 0ðxÞK0:5Þ; ð3:2Þ

where the function r0(x) is the high-frequency part of r(x) and r(x) is the random
number generated by the random number function of the Microsoft F-77
software. At first, a long enough data of r(x) are filtered by the iterative Gaussian
smoothing method with sZ0.0175428 and mz17 to drop those modes whose
lO0.025. That r0(x) employed in equation (3.2) is taken from the central part
of the resulting high-frequency part. A typical result shown in figure 9 is
corresponding to that of figure 5. All the other data are almost the same
as those shown in figures 6 and 7 and tables 3 and 4. Since the spectrum of
the random number is non-zero for all high-frequency modes, the consistent
results between that of equations (3.1) and (3.2) verify that the proposed
filter works.
Proc. R. Soc. A
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Figure 9. Original data with random number and results of applying the iterative Gaussian smoothing
method 1 (squares, y–y0), 5 (up triangles, y–y0), 10 (down triangles, y–y0), 20 (circles, y–y0), 50 (dashed
lines, y–y0) cycles, and other parameters are: dZ0.001, sZ0.193, mZ127. Thin solid line, original
data; thick solid line, original smooth part.

Y.-N. Jeng et al.16
The third test case uses the following composite waveform that involves a non-
sinusoidal part.

yðtÞZ 1C0:2xC0:005x2 C0:3 exp ½K0:005x2� sin ð0:6pxÞC0:4 sin ð10pxÞ
C0:2 sin ð5:4pxÞC0:3 exp ½K0:0005x2�ð1C0:2xC0:01x2Þ sin ð3:2pxÞ:

ð3:3Þ

In figure 10a,b, the original data are shown as a thin solid line, the original low-
frequency and non-sinusoidal parts (the first line of equation (3.3)) are shown as
a thick solid line, and the estimated low-frequency and non-sinusoidal parts are
shown as a dashed line. The error around the two ends is again obvious. The
corresponding log-error plots are shown in figure 11a,b, respectively. The error
around the two ends attenuates in an exponential manner as points move
towards the interior region such that the diffusive version has a slightly longer
penetration length (approx. 1.8 for both versions) than the iterative Gaussian
smoothing method.

The above comparisons show that, in the interior point far from the two
ends, the difference between the results of employing the iterative and diffusive
iterative Gaussian smoothing methods is insignificant for both the finite-
and infinite-domain data. Note that the latter version should remove a longer
segment around the two ends than that of the former version. Moreover,
the required computing time of employing the strict diffusive iterative
Gaussian smoothing method is about twice that obtained using the
iterative Gaussian smoothing method. The authors have examined many other
test cases with iteration step m%10 000 and similar conclusions for the original
and diffusive smoothing versions were obtained. Therefore, although the iterative
Gaussian smoothing method cannot be proven to be a strict diffusive filter, it
Proc. R. Soc. A
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Figure 10. Results of filtering a composite waveform involve a non-sinusoidal and low-frequency
part, y(x)ZysC0.4 sin (10px) C0.2 sin (5.4px) C0.3 exp (K0.0005x2)(1C0.2xC0.01x2) sin (3.2px);
ysZ1C0.2xC0.005x2C0.3 exp (K0.005x2) sin (0.6px)), using: (a) the iterative Gaussian smoothing
method with dZ0.001, sZ0.411, mZ5 and (b) the strict diffusive iterative Gaussian smoothing
method with dZ0.001, sZ0.2906, mZ5; double smoothing in a cycle. Thin solid line, original data;
thick solid line, original smooth part; dashed line, estimated smooth part.
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Figure 11. Final log-error plots of applying the iterative smoothing methods to a finite data string
of figure 10. (a) Error of employing the iterative Gaussian smoothing method (sZ0.4110; mZ5;
single smoothing in a cycle) and (b) error of employing the strict diffusive iterative Gaussian
smoothing method (sZ0.2906; mZ5; double smoothing in a cycle).
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can be applied to the cases with m!10 000 for both finite- and infinite-domain
data so as to save the computing resource. Based on this argument, the following
practical applications merely employ the iterative Gaussian smoothing method.

According to the above-mentioned tests and many other cases not shown here,
it seems that the penetration distance of employing the iterative Gaussian
smoothing method confirms the estimation given in table 2. As the number of
iterations increases, the distance x sfade=s may be scaled down by dividing by an
empirical factor of 1C0:8 log ðmÞ. Since the resulting �y and y0 in regions of
ðx0; x fadeCx0Þ and ðxNK x fade; xN Þ may involve large errors, it is recommended to
discard them if the data within these regions are not important and if the data
length is long enough.
Proc. R. Soc. A



Table 5. Comparison of different filtering techniques.

filters parameters max4%x%6 jerrorja

original Gaussian smoothing sZ0.4 10K1.46

iterative Gaussian smoothing dZ10K3, mZ5, sZ0.411 10K3.09

iterative Gaussian smoothing dZ10K4, mZ9, sZ0.476 10K4.01

iterative Gaussian smoothing dZ10K4.5, mZ11, sZ0.403 10K4.28

Dajbecnkies wavelet (dbN) NZ9 10K3.00

Symlet wavelet (symN) NZ11 10K3.49

Coiflet wavelet (coifN) NZ5 10K3.14

biorthogonal wavelet pair NrZ6, NdZ8 10K2.68

reverse biorthogonal wavelet pair (rbioNr.Nd) NrZ6, NdZ8 10K2.90

ajerrorjZ jysKye
s j, where ys and ye

s are the original and estimated smooth part of figure 10.

Y.-N. Jeng et al.18
A comparison between the present smoothing method and five well-known
wavelet filters has been performed. Since all these filters are subject to the errors
caused by the end effects induced by the finite data range, only the interior points
(4!x!6) are considered. Table 5 shows maximum absolute errors deduced from
the estimated smooth parts as shown in figure 10. The schemes selected for
comparison are the Gaussian smoothingmethod, the iterative Gaussian smoothing
method and the following five well-known wavelet filters: Dajbecnkies family
wavelet (dbN); Symlet wavelet (symN); Coiflet wavelet (coifN); biorthogonal
wavelet pair (biorNr.Nd); and reverse biorthogonal wavelet pair (rbioNr.Nd). In
deducing the data using the five wavelet filters, we employedMATLAB (Misiti et al.
2007) toolbox by applying the optimal tuning of the control parameters to
suppress error. As shown in table 5, even under the optimal conditions, the
performance of these five wavelet filters is not better than the current iterative
Gaussian smoothing method and not surprisingly the conventional Gaussian
smoothing method is worse than the other approaches. If one opts for a smaller
value of d under a moderate data length, the proposed iterative Gaussian
smoothing method may turn out to be better than the wavelet filters.

The next case involves the decomposition of a real electrocardiogram (ECG)
dataset downloadable from www.physionet.org website. The data record
represents an ECG of a healthy adult—data record number edb/e0103. The
total number of points is 16 500 and the duration of measurement is 60 s. Since
this dataset is a real-time measurement, it contains both the high-frequency noise
and the low-frequency baseline wander. The inter-beat (RR) interval of a healthy
human at rest is of the order of 1 s. Therefore, we selected sZ1.4 s to filter the
low-frequency baseline wander and sZ0.05 s to filter the high-frequency noise.
The critical iterations for both smoothings were fixed at 127 implying that the
cut-off transition zone for the low-frequency baseline wander is between
wavelengths of 1.82 and 3.64 s, and the cut-off transition zone for the high-
frequency noise is between wavelengths of 0.065 and 0.13 s. These choices were
selected by trial and error aiming at eliminating both the baseline wander and
the high-frequency noise while preserving the primary wave signatures.

Figure 12 shows the comparison of the raw and the smoothed ECG data in
which both the low-frequency baseline wander and the high-frequency noise are
filtered. It can be seen that the current smoothed data clearly display signatures
Proc. R. Soc. A
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Figure 13. The baseline wander of an ECG signal.
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of a healthy ECG pattern—it starts with a P wave, followed by the QRS complex
and the T wave. The baseline wander of the raw data of the ECG data examined
is fairly gradual. To create a challenge, we have altered the ECG data by adding
a measured baseline wander, which is also downloadable from the same website.
As shown in figure 13, the magnitude of this baseline wander is of the same order
as that of the ECG signals and it is also accompanied by additional random
noise. After the iterative Gaussian smoothing method is applied to the dataset to
filter the low-frequency baseline wander and the high-frequency noise, the results
are shown in figure 14. As shown in the figure, the current method provides
excellent smoothing of the raw data, and the repeating pattern of a healthy ECG
is clearly observed in the smoothed data.

The next case involves some experimental data from NASA Langley Research
Center Workshop on Computational Fluid Dynamics (CFD) Validation of
Synthetic Jets and Turbulent Separation Control (cfdval2004.larc.nasa.gov).
One of the cases in the workshop involves a zero-mass-flux, or synthetic,
jet issuing from a circular orifice. The zero-mass jet is driven by the rapid
motion of a piston-driven deformable wall inside a cavity. The piston is driven
Proc. R. Soc. A
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Figure 15. The comparison of the piston displacement and the data best fit using a sine wave
(squares, experimental data; solid line, best-fit single wave).
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Figure 14. High/low-pass filtering of an ECG signal perturbed by a strong baseline wander (solid line,
raw data; dot-dashed line, smoothed data; dashed line, predicted baseline wander).
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electromechanically using a sinusoidal voltage input with a prescribed frequency.
The phase-averaged data for the actuator’s displacement about its neutral
position are provided and the derivative of these data must be taken to obtain
the velocity boundary condition of the diaphragm for later CFD calculations.
Figure 15 shows the phase-averaged data for the piston displacement. Although
the profile seems smooth, the best fit of a single sine wave reveals that the data
profile is not exactly a sine wave and the data may consist of a combination of
several different waves. Since these data are phase averaged with the sinusoidal
voltage frequency, the data would contain only wave combinations of the voltage
frequency and its subharmonics. Indeed, a Fourier power spectrum analysis has
revealed that only waveforms with wavelengths of 3608, 1808, 1208 and 908 of the
sinusoidal voltage frequency are visible in the data. The wavelength ratios of two
adjacent waveforms are therefore 2, 1.5 and 1.3333. The solutions of equation
(2.16) provide choices of m and s to divide these waveforms: a critical pair of
sZ1398 and mZ127 is needed to divide the 3608 and 1808 waves; a critical pair
of sZ1088 and mZ8134 is needed to divide 1808 and 1208 waves, and a critical
pair of sZ918 and mZ596 134 is needed to divide the 1208 and 908 waves.
Proc. R. Soc. A
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Figure 16. The smoothed displacement profile of the piston’s 3608 wave (solid line); dot-dashed
line, 0.76 cos (2pt/T )K0.051; squares, combined wave minus cosine wave equation; dashed line,
0.066 sin (2pt/T ).

21A diffusive sharp filter
The wave decomposition is performed using the iterative Gaussian method
discussed with the periodic assumption such that the computing range is
extended to the point t, where exp ½KðtK teÞ2=2s2�!10K7, teZ0 or 2p. The
predominant waveform is the 3608 one shown as the solid line in figure 16. The
3608 waveform consists of two waves. The primary wave can be approximated by
fitting a cosine function as 0.076 cos (2p/T )K0.051, where T is the time period
of the piston cycle. The secondary wave can be obtained by subtracting the
primary wave from the smoothed 3608 wave and the difference is shown as
symbols in the figure. We can further fit the secondary wave with a sine function
as 0.066 sin (2p/T ), as shown in figure 16.

The decomposed 1808, 1208 and 908 waves are depicted in figure 17. These
waves can be further approximated by three cosine functions with variations
in phase shifts and magnitudes: 0.43 cos (4p(t/TK12.45/360)), 0.0177
cos (6p(t/TC24.53/360)) and 0.074 cos (8p(t/TC0.44/360)) for the 1808, 1208
and 908 waveforms, respectively.

Finally, the velocity of the piston movement can be obtained analytically by
differentiating the sum of five piston displacement equations with respect to time.
The analytical form of the velocity is depicted as a solid line in figure 18. Also, a
dashed line is presented showing the velocity derived from the best-fit single sine
wave to the piston displacement data. These results are then compared with
experimental velocity data, which are approximated by the slopes of the
displacement data at every two adjacent points. It can be seen that the comparison
of the experimental data and the current composite profile is excellent.
4. Conclusions

Two iterative algorithms based on the Gaussian smoothing method to filter and
decompose time-series dataaredeveloped: one is approximatelydiffusive and theother
is strictly diffusive. While these algorithms are general, they are used here in
conjunction with the moving least-squares method to handle the finite data length.
Proc. R. Soc. A
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Figure 18. Comparison of the final piston velocities. Squares, experimental data; dashed line, best-
fit single wave; solid line, composite waves.
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Figure 17. The decomposed 1808 (triangles), 1208 (squares) and 908 (diamonds) waveforms of
the piston displacement. Solid line, 0.043 cos [4p(t/TK12.45/360)]; dashed line, 0.0177 cos [6p(t/T
C24.53/360)]; dot-dashed line, 0.0074 cos [8p(t/TC0.44/360)].
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The connection between the frequency domain and the physical space can be
quantified by the selection of three parameters: the accuracy criterion; the Gaussian
smoothing factor; and the number of iteration performed. The distance of the error
penetration from the twodata ends into the interior region is studied. It is proven that,
in the interior point remote from the two ends, the result is the same as that of the
infinite data length. Themethod has been successfully tested in a number of problems.
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