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ABSTRACT 

 
  The continuous wavelet transform and short time 
Fourier transform, both using the Gaussian function as 
kernels, are enhanced by introducing a Gaussian 
window to the spectrum of the discrete Fourier spectrum 
with negligible low frequency error. By truncating two 
ends to obtain zero value via interpolation, the original 
data is redistributed via the monotonic cubic 
interpolation. Two necessary restrictions are: the 
number of points is of m2 and more than one point 
should be placed in every data interval of the original 
data string. The spectrum attains a negligible low 
frequency error after using a odd mapping to extending 
the data string. The Gaussian function factor of the 
Gabor transform is also related to the wavelength to 
improve the resolution in time domain. The enhanced 
Morlet wavelet and the enhanced Gabor transforms with 
fixed and variable σ ’s are applied to evaluate the 
spectrogram of a voice of the word “hello” . The 
visibility of all the resulting spectrograms is better than 
those employing the original Morlet and Gabor 
transforms. It seems that a coarse frequency resolution 
or a wide window in frequency direction will modified 
the true feature of a spectrogram. Moreover, there are 
many detailed information involved in the resulting the 
spectrograms which may be related to the emotion and 
character of speaker. 
 
Keywords: Spectrogram, Gabor transform, Morlet 

transform, fine frequency resolution 
 

1. INTRODUCTION 
 
   The spectrogram is an time-frequency representation 
which allow a precise description of non-stationary 
speech signal [1-6]. Two-dimensional spectrogram 
images are computed by concatenating spectra obtained 
by short time Fourier transforms, which is also named 
as the Gabor transform [2]. This transformation assumes 
that the signal is quasi-stationary for the length of the 
window. As noted in Ref.[3], time and frequency 
resolutions are inversely proportional because good 
resolution in both the time and frequency domains in the 

same image is not possible. Consequently, a small 
analysis window leads to poor localization of the 
frequency components and vice versa. In practice, 
narrowband spectrograms (with long window lengths) 
are used for good frequency resolution while wideband 
spectrograms (with short window lengths) allow good 
temporal resolution of speech signals. To improve this 
deficiency, people either employed a better localization 
or used method of reassignment and had successfully 
enhanced the accuracy of creating speech features [4-6]. 

To the authors’ knowledge, the resolution of a 
spectrogram is much coarser than that of a finger-print. 
In fact, human’s speech signals are generated by organic 
voice system and involve many characteristics of the 
speaker. Consequently, from a speech signal string, one 
can understand not only the information of the speech 
itself but also the emotion, physical function and health 
state of the speaker. Unfortunately, authors can not find 
a report about how to extract a speaker’s health 
conditions and emotions from a spectrograms generated 
by a currently short time Fourier transform. 
     In general, a data string may or may not involve 
smooth non-periodic and rapid varied parts. Typical 
examples of rapidly varied parts are discontinuous jump 
and spikes of brain neural signals. The corresponding 
spectrum components of these non-sinusoidal parts also 
run over the whole spectrum domain. To generate a 
Fourier spectrum of a finite data string, most people just 
access an available Fast Fourier Transform (FFT) 
algorithm. The application of an FFT algorithm to an 
untreated data string may be equal to enforce the 
periodic condition at two ends of the data string which 
leads to certain spectrum error. Therefore, a spectrum 
generated by an FFT algorithm may contain a 
significantly large fraction of information of the 
non-periodic error and non-sinusoidal parts. Although a 
speech signal might not involve significant 
non-sinusoidal information, the non-periodic error is 
still a trouble source. In order to remove the deficiency 
caused by this error, people successfully employed 
different windows to extract local information without 
removing the error [1]. However, a windowing spectrum 
embedded with unknown degree of error cannot be 
employed as a precise parameter representation of the 
original data such as to enhance the visibility of 
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spectrograms. In a recent study, the authors had 
proposed a simple strategy to obtain an accurate 
spectrum by eliminating the non-periodic condition and 
removing the non-sinusoidal part before applying an 
FFT algorithm [7]. This algorithm has a penalty that the 
effective data length is shrunk because the data string is 
truncated to zero crossing location at two ends. 

After Morlet proposing a continuous wavelet 
transform[8], Farge et. al. had successfully employed it 
to study the turbulent flow data string [9,10]. In fact, a 
continuous wavelet coefficient plot is in some sense 
similar to the spectrogram generated by the short time 
Fourier transform[1,2]. In Ref.[11], the Morlet wavelet 
transform had been improved by embedding a Gaussian 
window to the spectrum so that the resulting 
two-dimensional wavelet coefficient clearly showing 
many features not seen before. In this study, the 
coefficient plots of both the enhanced Morlet and Gabor 
transforms will be examined both embedded with a 
Gaussian window to the spectrum generated by the 
algorithm of Ref.[7]. 
 

THEORETICAL ANALYSIS 
 
     Assuming that a data string is only composed of 
general sinusoidal waves whose amplitude and 
frequency may or may not be functions of time. The 
simple strategy of Ref.[7] is modified to be the 
followings. 
1. Choose zero crossing points at two ends and use an 

interpolation method to find 0 points there. 
2. Use the monotonic cubic interpolation of Ref.[12] 

to regenerate the data so that total number of points 
are of m2 . Note that more than one point should be 
located in the range between two successive data 
points of the original data string to reduce 
interpolation error. 

3. Use an odd function mapping to extend the data 
string so that the number of points becomes 12 +m . 

4. A simple and fast Fourier sine transform algorithm 
is employed to generate the desired spectrum. 

Because the zero values at two ends are used and the 
odd function mapping are employed, no any error due to 
non-periodic condition is introduced except the 
interpolation error. However, since the zero values are 
chosen at two ends, the penalty of shrinking the 
available data range can not be avoided. 
 
    Assume that a discrete data string can be 
approximated by 
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A careful inspection upon this formula reveals that, if 
the original data is of the form 
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where 3/πλ am = , the response of applying Eq.(2) will 
give a non-zero value in the region of 11 5.6 ttat <<−  

a5.6+ and mm λλλ 4.265.0 << . Since there is not any 
adjustable parameter in Eq.(2), one cannot change the 
factor 6.5 in time domain except if another windowing 
function is chosen.  
 
    The following short time Fourier (or Gabor) 
transform maps the data )(ty  into the continuous 
Gabor coefficient.  
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The resulting response for a given set ),( fa is 
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For the test function of Eq.(4), at mf λ/1= , the non-zero 
response range is somewhat similar to that of Morlet 
transform mentioned above. 
    In order to shrink the response range in frequency 
domain, both the Morlet and Gabor transform are 
embedded with a Gaussian window on the spectrum 
domain. The resulting enhanced Morlet transform is 
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where πaT /3  is the mode number associated with the 
Gaussian window parameter a  and n  is the mode 
number. The enhanced Gabor transform is 
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where ,mff = and m  is the mode number. The 
wavelet coefficient of Eq.(7) contiains a user specified 
parameter σ  while the Gabor coefficient of Eq.(8) has 
two user specified parameters σ and a . The parameter 
a  takes a constant value for all σ  and τ . However, 
this specification froze the window size in time domain. 
In fact, it can be related to the specific wavelength by 
defining fkka /== λ , where k  is a parameter to 
adjust the window size on time domain. Consequently, 
the following new Gabor transform is obtained, say 
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If one exclude the trem ( ) 2//6/2exp[2/ 22 aaa n −− λππ  

)2/()]/(3[ 22 σπaTn −− from Eq.(7), ×− 22exp[2/ ππa  

])( 22 ffa n − )]2/()(exp[ 22 σmn −− from Eq.(8), and 

[ ] )]2/()(exp[)(2exp2/ 222222 σλπλπ mnffkk n −−−−
from Eq.(9), respectively, the remaining terms are only 
but some rearranged form of Eq.(1). Consequently, by 
summing up a or f  for a givenτ , one can easily gain 
an inverse transform by taking the whole 
two-dimensional coefficient domain or excluding 
specific regions, provided that the calculated a or f can 
approximately resolve the whole spectrum. For a 
discrete data string, the upper limit of summations of 
Eqs.(7-9) becomes a finite value N  and similar inverse 
transforms can be easily obtained too. 
 
RESULTS AND DISCUSSIONS 
 
    Now a string of the voice “hello” (shown in Fig.1) 
is employed to examine the present modifications. The 
corresponding spectrum is shown in Fig.2. By using 120 
uniformly spacing lines to resolve the frequency from 
50 to 1350Hz ( 11≈∆f Hz), the resulting spectrogram 
generated by the classical Gabor transform are shown in 
Fig.3, where Fig.3a is the narrowband spectrogram 
(with long window size 02.0=a second) and Fig.3b is 
the wideband spectrogram (with short window size 

002.0=a  second). These results agree with the well 
known knowledge that the narrowband spectrogram 

gives detailed resolution in frequency-direction while 
the wideband spectrogram shows detailed resolution in 
time. To obtain a complete information, these two 
spectrograms should be combined via some procedure. 
That shown in Fig.4 is the resulting spectrogram of the 
enhanced Gabor transform employing the variable 
window size )( λka =  and  windowed spectrum with 
parameter 1=k  in Eq.(9). This result is similar to 
results of the enhanced Gabor transform with fixed 
windowing size ( 002.0=a second) and 1=k and the 
enhanced Morlet transform with the spectrum 
windowing factor 1=σ  and 1=k . These results are 
now shown here because of length limitation of the 
paper.  
 

A careful comparison between Figs.3 and 4 reveals 
that the three proposed methods: the enhanced Morlet 
transform and enhanced Gabor transform with fixed and 
variable a  are slightly better than the narrowband 
spectrogram generated by the original Gabor transform. 
In some sense, for a coarse frequency resolution, it 
means that all the present enhanced transformations 
generate a result which assemblage information of 
narrow and wideband spectrograms. However, the 
window size a  of both narrow and wideband of the 
original Gabor need a try and error procedure for a 
given frequency resolution. On the other hand, all the 
three enhanced transform are relatively insensitive with 
respect to their corresponding parameters.  
 
     Now the calculation is restricted to be the range of 
400 to 500Hz with 100 uniformly spacing lines so that a 
fine frequency resolution is achieved. The best resolved 
narrow and wideband spectrograms are shown in Fig.5. 
Results of employing the enhanced Morlet transform 
with 1=σ , the enhanced Gabor transform with fixed 

002.0=a second and 1=σ , and the enhanced Gabor 
transform with variable a ( 1=k ) and 1=σ  are shown 
in Fig.6 through Fig.8, respectively. In order to get a 
more complete impression about these results, the 3-D 
plot of the spectrograms are also included. It seems that 
the narrowband spectrogram generated by the original 
Gabor transform cannot suggest a fine enough 
resolution in the frequency-direction. Note that, 
whenever 1<<a  second, the region with a non-zero 
value of [ ]222 )(4exp ffa n −− π  covers a wide range in 
the frequency-direction. That means too many 
information are folded into the coefficient ( )afG ,,τ of a 
line of cf = on the wideband spectrogram diagram. 
Consequently, the accuracy of this wideband data is not 
sufficiently high such that it is rather difficult to 
assemblage both the narrow and wideband spectrograms 
into a detailed spectrograms. 
      On the other hands, all the figures of Fig.6-8 
show more detailed information than that of Figs.5. By 
examining the three-dimensional amplitude (energy) 
plots of Fig.5, it is seen that the original Gabor 
transform cannot resolve the horizontal strips very well 
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because it fold too many information from many wave 
components with different frequency at the same time. 
On the other hand, the horizontal strips structure of 
Figs.6-8 are obvious. Figure 9a shows the real part plot 
corresponding to Fig.8, while Fig.9b shows the detailed 
plot from 2.0=t  to 0.3 second. These real plots clearly 
show the phase information. Figure 9b clearly shows 
phase difference between wave components whose 
frequencies close to each other. Consequently, either for 
a coarse frequency resolution plot with 1=σ  or a fine 
frequency resolution plot with 2≥σ , the wavelet 
coefficient or the Gabor coefficient will larger around 
the in phase region and smaller around the out-of phase 
region than those fine frequency resolution plot such as 
Fig.9a. Although human ear can not resolve such a fine 
frequency resolution feature, it relates to the detail states 
of speaker. In other words, if one tries to correlate the 
spectrogram with speaker’s mood, organic structure, 
and health state etc., the fine frequency resolved 
spectrogram generated by the present methods are 
necessary. 
 
      A careful inspection upon Figs.6-8 reveals that, 
for the capability to resolve the detailed structure of the 
spectrogram, the best one is the enhanced Gabor 
transform with variable parameter a  (Fig.8), the worst 
one is the enhanced Morlet transform. It should be noted 
that the enhanced Gabor transform with a fixed a  has 
the problem to find the best parameter a . On the other 
hand, if σ =1 is selected, the enhanced Morlet 
transform and the enhanced Gabor transform with a 
variable a  characterized by the parameter k =1 need 
not to worry about how to determine the parameter 
value. Therefore, it is recommend to employ either the 
enhance Morlet transform or the enhance Gabor 
transform with a variable parameter a  related to the 
wavelength or frequency of the Gabor coefficient. 
 
CONCLUSIONS 
 
    The present study purposes the enhance Morlet 
transform, the enhanced Gabor transforms with fixed 
and variable window size factors on time domain. Their 
capabilities to resolve a voice “hello” onto the 
spectrogram are all better than that generated by the 
original Gabor transform. These new techniques have 
the potential to  examine the conditions of speaker.  
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Fig.1  The raw data of the voice “hello”.  

 
 
 
 
 
 
 

Fig.2 The spectrum of three voice “hello” of Fig.1, 
respectively with the horizontal axis be the mode 
number and the vertical axis be the amplitude of 
each mode.  
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(3a) 
 
 
 
 
 
 
 
 
 
 
 
 

(3b) 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.3 The spectrogram generated by the original Gabor 
transform: (3a) is the narrowband spectrogram 
with Gaussian window factor 02.0=a second, 
and (3b) is the wideband spectrogram with 
=a 0.002 second. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig.4 The spectrogram generated by the new Gabor 
transform with variable windowed size ( 1=k ) of 
spectrum and variable Gaussain window factor 
a . 

 
 
 
 
 
 
 
 
 
 
 
 

(5a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(5b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.5 The spectrograms with fine frequency resolution 

generated by the original Gabor transform: (5a) is the 
narrowband spectrogram ( 1.0=a second) and (5b) is 
the wideband spectrogram ( =a 0.02 second). 
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Fig.6 The spectrogram generated by the enhanced 
Morlet transform with 1=σ . 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
Fig.7 The spectrogram generated by the enhanced 

Gabor transform with fixed 002.0=a  second 
and 1=k . 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.8 The spectrogram generated by the enhanced Gabor 

transform with variable a ( 1=k ) and =σ 1. 
(9a) 

 
 
 
 
 
 
 
 
 
 
 
 
 

(9b) 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.9 The real part plot of the spectrogram generated by 
the enhanced Gabor transform with variable 
a ( 1=k ) and =σ 1: (a) overall data plot, and (b) 
detailed data plot. 
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