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ABSTRACT

The continuous wavelet (Morlet) transform is modified by adding a Gaussian window to the Fourier
spectrum corresponding to the scale function. The Jeng and Cheng strategy of effectively suppressing the
non-periodic and low frequency error of the spectrum together with an iterative filter are employed so that
the windowing procedure on the spectrum domain can be accurately done. The existence of the inverse
transform of the present modified transformation can be shown. The bandwidth of the resulting
two-dimensional wavelet coefficient plot of a single sine function is much narrower than that generated by
the original Morlet transform. Subsequently, the visibility of the wavelet coefficient plot of several waves
with frequencies closing to each other is significantly improved. The application of the proposed wavelet
transform to the velocity data string of a low speed turbulent wake flow after a blunt body clearly shows
many details which are not known before. On the resulting wavelet coefficient plots, many frequency
splitting and merging procedures between waves can be easily captured. The data shows that an energy
cascade process is not a simple frequency transformation. It involves a sequence of frequency splitting and
merging. The results also show that a systemic and intensive restudy upon a turbulent flow field is necessary
to explain the physical meaning of all the detailed insights of a turbulent flow data.

Keywords: New tool of detailed turbulent information, modified Morlet transform, Gaussian window on
spectrum domain, spectrum without low frequency error.

Introduction

The study upon a turbulent flow field is seriously
restricted by the fact that there is not effective tool to
look into the details. In spite of the fact that many
turbulent data can be easily and effectively collected,
people can only calculate the overall Fourier spectrum,
turbulent kinetic energy, and a few other lumped
properties. Together with results of the Direction

Numerical Simulation (DNS) and flow visualization,
people do grasp many physical insights. However,
precise interpretation of the effect of numerical error
upon a DNS data is still an open and difficult issue. The
development of flow visualization is still far away from
the stage of clearly providing detailed information of a
turbulent flow field. As a consequence, people can only
understand a turbulent flow field to a limited extend.
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As the
introduced to study turbulent flow [1-4], many studies
followed up [5-12] because they agreed with the view
point of Farge that the Morlet transform can provide the
local information of spectrum. In Ref.[2,3] Farge also
pointed that the Fourier spectrum reflects the lumped
information over the expansion range and can not
provide the local information. Unfortunately, there are
not much detailed information can be directly obtained
from the resulting wavelet coefficient plot. Therefore,
people have to employ other techniques to extract
desired information from the resulting wavelet
coefficient plot.

Recently, there were two studies [13,14] were
related to the drawbacks of the continuous wavelet
transform. In Ref.[13], the factors inducing the low
frequency error of a Fourier spectrum was identified to
be: non-periodic condition, non-periodic part of the data
string, and insufficient expansion range of the long wave
part. Therefore, the low frequency error was fixed so that
one can obtain a spectrum with the error in the order of a
high order non-oscillatory interpolation’s error. However,
a later study [14] showed that the method of removing
the non-periodic and long wave parts of a data string is
not perfect. An iterative high passed filter was then
proposed.

In this study, the non-periodic and long wave parts
of a data string are removed by the iterative filter of
Ref.[14] and an accurate Fourier spectrum is then
obtained by the strategy of Ref.[13]. With an correct
Fourier spectrum in hand, the Morlet transform can then
be re-manipulated successfully as the present study done.

Analysis

For the sake of completeness, the works of
Ref.[13,14] are briefly reviewed. In Ref.[13], the
following strategy was proposed:

1. Choose zero crossing points at two ends. Use an
interpolation method to find O points there.

2. Use the monotonic cubic interpolation of Ref.[15] to
regenerate the data so that total number of points are
of 2™ Note that more than one point should be
located in the range between two successive data
points of the original data string to reduce
interpolation error.

continuous wavelet transform was

3. Asimple and fast Fourier sine transform algorithm is
employed to generate the desired spectrum.
Because the zero values at two ends are used and the
Fourier sine transform is employed, no any error due to
non-periodic  condition is introduced except the
interpolation error. Since the values are chosen at two
ends, the penalty of shrinking the available data range
can not be avoided.
Assume that a discrete data string can be
approximated by

N
y(t) = ;bn cos[i—?}rcn sin[i—ﬂtJ Q)

n

In Ref.[14], it was proven that after applying the
Gaussian smoothing once, the resulting smoothed data
becomes

N
V10 ~ Y a(o/ 4, b, cos[i_’:‘j +c, Sin(i_ﬂtj} @

n=0 n
where a(o/A,)is the attenuation factor introduced by
the smoothing and can be proven numerically that
0<a(o/A,)~exp[-2z%c? 1 22]1<1 ©)

If the removed high frequency part is denoted as yi and
apply the same smoothing to it to obtain the second
smoothed result as y, and repeat the same procedure
to obtain the M — th smoothed and high frequency part
as Y,and y;n, respectively. The following relation can
be builty

: m 27t . 2nt
Ym = Z[l—a(o//in)] {bn cos(/l—}rcn mn(TH

V(M) 2§, + 7, 4ot Yy = " "

N
= nZ:(;{l—[l— a(o ! A, )]m){bn cos[i—:t}r Ch sin[i—?ﬂ

(4)
y(m) can be considered as the smoothed part and y;n
as the high frequency part. It was proven in Ref.[14] that
the transition region from {L-[1-a(c/4,)]"} =0to1
is much narrower than that of the original a(a/A4,).
The following Morlet transform transfer a data
string y(t) into the wavelet coefficient.

W)= [yoow = o )

. 2
where w(x):e'exe"x‘ '2 and a is called as the scale

function. If this transform is applied over a range
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a, <a<a,, a two-dimensional wavelet coefficient
plot is obtained on the (a,7) plane. By applying Eq.(5)
to Eq.(1), it can be easily shown that, the resulting
equation can be approximated by

N 2 2
W(a,r)szMEexp _afex 8 coszm+isin 2
2 24 a An A

n=0

N 7a a’(2z 6 : . 2T 2zt (6)
+ZCM—eXp - == sin —icos
2 2\, a An An

n=0

A careful inspection upon this formula reveals that, if the
original data is of the form

y(t) = sin[i—ﬂt} t <t<t,

m

(")

=0 otherwise

where A, =ax/3, the response of Eq.(6) will give a
non-zero value in the region of t; —6.5a<t<t, +6.5a
and 0.654, <A< 2.44,. Since the wavelet coefficient
changes with respect to the scale function a, one can
not further improve this contaminated region on the time
domain. However, the contaminated region on the
frequency domain can be improved by adding a window
to the original data say

N 2t (ot (f—f,)
y(t) = ;{bn COS[ZJH,] sm(l—} exp[—za—z]

n

8)
where f., =T/A,, f,=T/A4, and T is the data range
in time domain. This windowing procedure can be
effectively achieved only if the spectrum is accurately
evaluated. The resulting wavelet coefficient takes the
form

n=0 n 20 n
n=0 P 2 An a 20'2 P An
(9),

where N is the mode number corresponding to f,and
A, and A, =ax/3. If one perform the summation
over all the values ofa’s, the inverse transform can be
easily obtained from the real part because the factor

0 2 )
an exp[—a_;[i_”_gJ _[n-3T /(Za;z)]2 J exp{'i’”}

embedded to the spectrum b, and c,in Eq.(9) are the
same.

In order to effectively reflect the original data’s
character, let

kn—lzT/ﬂ’n—l’ knzT/ﬂ.n, kn+l=T/ﬂ’n+l (10)
The window size scale o takes the following value
o=C- max[| I(n - I(n—l |’| kn+1 - kn |] (11)

where ¢ =1or 2 is employed in this study.

Results and Discussions

Figure la is the wavelet coefficient plot of the
following function generated by the original Morlet
transform, say

y(X) =sin(2fX)

f =4, X<8 r
=4+(x-8)/4, 8<x<l12 (12)
=5, 12<x

That shown in Fig.1b is the result of present modification
with ¢=1. It is seen that the resolution of the present
modification is significant. However, the frequency
variation can not be captured very well which is caused
by the Gaussian kernel function.
sin(8.72x) and sin(9.37x) are added the original Morlet
transform cannot reflect these three waves but the
present modification gives the result shown in Fig.2
where three waves can be easily distinguished.

If two waves

Now the experimental data of Ref.[10] is
employed to demonstrate the present modified wavelet
transform. The u velocity data at 0.5d and 3d
downstream locations along the centerline of the blunt
body’s wake region are examined (see Fig.3a),
respectively, whered = 32mm is the width of the blunt
body and Re, =16500 is employed. The location of
0.5d is within the wake region, while that of 3d is at
the down stream side out of the wake. The removed
smoothed part corresponding to these two data string is
shown in Fig.3b and 3c, respectively. It is obviously that
if these parts are not removed, the corresponding
spectrums will involve their contribution over the whole
spectrum domain which introduces certain error. The
resulting spectrums are shown in left and right of Fig.4,
respectively. From these spectrums, it is obviously that at
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0.5d location, there is not obvious shedding frequency
mode. On the other hand, at 3d location, the dominate
and three sub-harmonic modes can be easily captured.
Note that, if their non-periodic parts are not removed, the
second and third the sub-harmonic modes can not be
easily captured. Generally, the third mode might be
ignored because it is interfered by the low frequency
error.

The wavelet coefficient plots corresponding to

0.5d and 3d are shown in Fig.5 and Fig.6, respectively.

Both the energy (amplitude) and real part of Fig.5 show
that the vortex shedding information x = 0.5d presents
in a piecewise manner which can be seen along the line
of a=0.0133 (~72 Hz and St=fd/U,=0.305).
Many sub-harmonic modes also present in the same
piecewise manner. Moreover, the frequency splitting and
merging can be seen here and there between these
dominate and sub-harmonic modes. It seems that from
the real part plot one can get a more direct feeling upon
the feature than that of the amplitude plot because the
phase information give us a direction impression about
the flow oscillation. The result shown in Fig.6 reflects
that the vortex shedding does not give a perfect
continuous spectrum line around the a=0.0133 line.
This is true because a vortex shedding from the inclined
surface of the blunt body shown in Fig.3a can not always
generate a regular and well structured vortex as can be
seen from the flow visualization plot of Ref.[10].
Moreover, the high order sub-harmonic modes can not
exactly persist their frequencies at exactly the integer
multiples of the dominate frequency, say integer
multiples of a =0.0133.

Part of the information of the energy cascade can be
found by examining many left and right inclined waves
between the dominate and the first sub-harmonic modes
of Fig5 and Fig.6, respectively. In Fig.5, the complex
structures of these waves between dominate modes show
that the energy cascade within the wake region is not a
simple path. On the other hand, at the x=3d location
where the mean velocity is almost recovered from small
scaled waves, all the small scale waves will be
eventually dissipated out. Consequently, one can see
many left inclined wave stemming from the first
sub-harmonic mode and running toward the first

dominate mode and from the first mode toward still more
fine scale waves as shown. These left inclined waves are
not in a single and straight manner. They also involve
many frequency splitting and merging procedure.

Since the experimental facilities does not involve a
high speed camera and flow visualization via laser sheet
splitting, the flow structure corresponding to all the
details of frequency splitting and merging between
waves of different wavelengths can not be exactly
addressed. It seems that systematic restudies about this
and many other turbulent flow fields are necessary so
that the physics of the frequency splitting and merging
can be correctly captured.

Conclusions

A new and effective tool to inspect a complicated
data string of a turbulent flow field was successfully
developed by modifying the Morlet transform. The
visibility of the resulting wavelet coefficient plot along
the frequency direction is significantly recovered by
employing an iterative filter and a simple strategy of
removing the low frequency error of the Fourier
spectrum. Many resulting turbulent flow details on the
spectrum domain are first seen so that they can only be
partially explained. It seems that systematic and well
organized experiments are necessary to obtain a fully
understanding about a turbulent flow field. Besides,
further developments upon many fields related to
complicated data strings can be started by employing the
present modifications upon the Fourier spectrum and
continuous wavelet transform. A series of study upon
brain, neural, and earth quake signals are on the way.
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Fig.1la The real part of the wavelet coefficient plot

evaluated by the original Morlet transform
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Fig.1b The real part of the wavelet coefficient of the
wave with a variable frequency by the present
modified Morlet transform with ¢ =1 and 40
uniform spaces to resolve the scale
0.1<a<03.
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