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ABSTRACT 

 
The continuous wavelet (Morlet) transform is modified by adding a Gaussian window to the Fourier 

spectrum corresponding to the scale function. The Jeng and Cheng strategy of effectively suppressing the 
non-periodic and low frequency error of the spectrum together with an iterative filter are employed so that 
the windowing procedure on the spectrum domain can be accurately done. The existence of the inverse 
transform of the present modified transformation can be shown. The bandwidth of the resulting 
two-dimensional wavelet coefficient plot of a single sine function is much narrower than that generated by 
the original Morlet transform. Subsequently, the visibility of the wavelet coefficient plot of several waves 
with frequencies closing to each other is significantly improved. The application of the proposed wavelet 
transform to the velocity data string of a low speed turbulent wake flow after a blunt body clearly shows 
many details which are not known before. On the resulting wavelet coefficient plots, many frequency 
splitting and merging procedures between waves can be easily captured. The data shows that an energy 
cascade process is not a simple frequency transformation. It involves a sequence of frequency splitting and 
merging. The results also show that a systemic and intensive restudy upon a turbulent flow field is necessary 
to explain the physical meaning of all the detailed insights of a turbulent flow data. 
 
Keywords: New tool of detailed turbulent information, modified Morlet transform, Gaussian window on 

spectrum domain, spectrum without low frequency error. 
 

Introduction 
    The study upon a turbulent flow field is seriously 
restricted by the fact that there is not effective tool to 
look into the details. In spite of the fact that many 
turbulent data can be easily and effectively collected, 
people can only calculate the overall Fourier spectrum, 
turbulent kinetic energy, and a few other lumped 
properties. Together with results of the Direction 

Numerical Simulation (DNS) and flow visualization, 
people do grasp many physical insights. However, 
precise interpretation of the effect of numerical error 
upon a DNS data is still an open and difficult issue. The 
development of flow visualization is still far away from 
the stage of clearly providing detailed information of a 
turbulent flow field. As a consequence, people can only 
understand a turbulent flow field to a limited extend. 
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     As the continuous wavelet transform was 
introduced to study turbulent flow [1-4], many studies 
followed up [5-12] because they agreed with the view 
point of Farge that the Morlet transform can provide the 
local information of spectrum. In Ref.[2,3] Farge also 
pointed that the Fourier spectrum reflects the lumped 
information over the expansion range and can not 
provide the local information. Unfortunately, there are 
not much detailed information can be directly obtained 
from the resulting wavelet coefficient plot. Therefore, 
people have to employ other techniques to extract 
desired information from the resulting wavelet 
coefficient plot. 
     Recently, there were two studies [13,14] were 
related to the drawbacks of the continuous wavelet 
transform. In Ref.[13], the factors inducing the low 
frequency error of a Fourier spectrum was identified to 
be: non-periodic condition, non-periodic part of the data 
string, and insufficient expansion range of the long wave 
part. Therefore, the low frequency error was fixed so that 
one can obtain a spectrum with the error in the order of a 
high order non-oscillatory interpolation’s error. However, 
a later study [14] showed that the method of removing 
the non-periodic and long wave parts of a data string is 
not perfect. An iterative high passed filter was then 
proposed. 
     In this study, the non-periodic and long wave parts 
of a data string are removed by the iterative filter of 
Ref.[14] and an accurate Fourier spectrum is then 
obtained by the strategy of Ref.[13]. With an correct 
Fourier spectrum in hand, the Morlet transform can then 
be re-manipulated successfully as the present study done. 

Analysis 
    For the sake of completeness, the works of 
Ref.[13,14] are briefly reviewed. In Ref.[13], the 
following strategy was proposed: 
1. Choose zero crossing points at two ends. Use an 

interpolation method to find 0 points there. 
2. Use the monotonic cubic interpolation of Ref.[15] to 

regenerate the data so that total number of points are 
of . Note that more than one point should be 
located in the range between two successive data 
points of the original data string to reduce 
interpolation error. 

m2

3. A simple and fast Fourier sine transform algorithm is 
employed to generate the desired spectrum. 

Because the zero values at two ends are used and the 
Fourier sine transform is employed, no any error due to 
non-periodic condition is introduced except the 
interpolation error. Since the values are chosen at two 
ends, the penalty of shrinking the available data range 
can not be avoided. 
    Assume that a discrete data string can be 
approximated by 
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In Ref.[14], it was proven that after applying the 
Gaussian smoothing once, the resulting smoothed data 
becomes 
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where )/( na λσ is the attenuation factor introduced by 
the smoothing and can be proven numerically that 
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If the removed high frequency part is denoted as  and 
apply the same smoothing to it to obtain the second 
smoothed result as 

'
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2y  and repeat the same procedure 
to obtain the −m th smoothed and high frequency part 
as my and , respectively. The following relation can 
be built 
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)(my  can be considered as the smoothed part and  
as the high frequency part. It was proven in Ref.[14] that 
the transition region from  = 0 to 1 
is much narrower than that of the original 

'
my
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    The following Morlet transform transfer a data 
string  into the wavelet coefficient. )(ty
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where 2/6
2

)( xxi eex −=ψ  and a  is called as the scale 
function. If this transform is applied over a range 
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10 aaa ≤≤ , a two-dimensional wavelet coefficient 
plot is obtained on the ),( τa  plane. By applying Eq.(5) 
to Eq.(1), it can be easily shown that, the resulting 
equation can be approximated by 
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A careful inspection upon this formula reveals that, if the 
original data is of the form 
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where 3/πλ am = , the response of Eq.(6) will give a 
non-zero value in the region of attat 5.65.6 21 +<<−  
and mm λλλ 4.265.0 << . Since the wavelet coefficient 
changes with respect to the scale function , one can 
not further improve this contaminated region on the time 
domain. However, the contaminated region on the 
frequency domain can be improved by adding a window 
to the original data say 
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where nnmm TfTf λλ /,/ ==  and is the data range 
in time domain. This windowing procedure can be 
effectively achieved only if the spectrum is accurately 
evaluated. The resulting wavelet coefficient takes the 
form 
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where  is the mode number corresponding to and n nf

nλ  and 3/πλ am = . If one perform the summation 
over all the values of ’s, the inverse transform can be 
easily obtained from the real part because the factor 

embedded to the spectrum  and in Eq.(9) are the 
same.  

a

nb nc

In order to effectively reflect the original data’s 
character, let 

1111 /,/,/ ++−− === nnnnnn TkTkTk λλλ       (10) 
The window size scale σ  takes the following value 

|]||,max[| 11 nnnn kkkkc −−⋅= +−σ          (11) 
where 1=c or 2 is employed in this study. 
 

Results and Discussions 
 
   Figure 1a is the wavelet coefficient plot of the 
following function generated by the original Morlet 
transform, say  
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That shown in Fig.1b is the result of present modification 
with 1=c . It is seen that the resolution of the present 
modification is significant. However, the frequency 
variation can not be captured very well which is caused 
by the Gaussian kernel function. If two waves 

)7.8sin( xπ and )3.9sin( xπ are added the original Morlet 
transform cannot reflect these three waves but the 
present modification gives the result shown in Fig.2 
where three waves can be easily distinguished. 
 
     Now the experimental data of Ref.[10] is 
employed to demonstrate the present modified wavelet 
transform. The velocity data at and  
downstream locations along the centerline of the blunt 
body’s wake region are examined (see Fig.3a), 
respectively, where

u d5.0 d3

mm32=d is the width of the blunt 
body and =16500 is employed. The location of 

 is within the wake region, while that of  is at 
the down stream side out of the wake. The removed 
smoothed part corresponding to these two data string is 
shown in Fig.3b and 3c, respectively. It is obviously that 
if these parts are not removed, the corresponding 
spectrums will involve their contribution over the whole 
spectrum domain which introduces certain error. The 
resulting spectrums are shown in left and right of Fig.4, 
respectively. From these spectrums, it is obviously that at 

dRe
d5.0 d3
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d5.0 location, there is not obvious shedding frequency 
mode. On the other hand, at  location, the dominate 
and three sub-harmonic modes can be easily captured. 
Note that, if their non-periodic parts are not removed, the 
second and third the sub-harmonic modes can not be 
easily captured. Generally, the third mode might be 
ignored because it is interfered by the low frequency 
error. 

d3

      The wavelet coefficient plots corresponding to 
and  are shown in Fig.5 and Fig.6, respectively. 

Both the energy (amplitude) and real part of Fig.5 show 
that the vortex shedding information presents 
in a piecewise manner which can be seen along the line 
of  ( ≈ 72 Hz and 

d5.0 d3

dx 5.0=

0133.0=a 305.0/St 0 == Ufd ). 
Many sub-harmonic modes also present in the same 
piecewise manner. Moreover, the frequency splitting and 
merging can be seen here and there between these 
dominate and sub-harmonic modes. It seems that from 
the real part plot one can get a more direct feeling upon 
the feature than that of the amplitude plot because the 
phase information give us a direction impression about 
the flow oscillation. The result shown in Fig.6 reflects 
that the vortex shedding does not give a perfect 
continuous spectrum line around the  line. 
This is true because a vortex shedding from the inclined 
surface of the blunt body shown in Fig.3a can not always 
generate a regular and well structured vortex as can be 
seen from the flow visualization plot of Ref.[10]. 
Moreover, the high order sub-harmonic modes can not 
exactly persist their frequencies at exactly the integer 
multiples of the dominate frequency, say integer 
multiples of . 

0133.0=a

0133.0=a
 
    Part of the information of the energy cascade can be 
found by examining many left and right inclined waves 
between the dominate and the first sub-harmonic modes 
of Fig5 and Fig.6, respectively. In Fig.5, the complex 
structures of these waves between dominate modes show 
that the energy cascade within the wake region is not a 
simple path. On the other hand, at the location 
where the mean velocity is almost recovered from small 
scaled waves, all the small scale waves will be 
eventually dissipated out. Consequently, one can see 
many left inclined wave stemming from the first 
sub-harmonic mode and running toward the first 

dominate mode and from the first mode toward still more 
fine scale waves as shown. These left inclined waves are 
not in a single and straight manner. They also involve 
many frequency splitting and merging procedure. 

dx 3=

    Since the experimental facilities does not involve a 
high speed camera and flow visualization via laser sheet 
splitting, the flow structure corresponding to all the 
details of frequency splitting and merging between 
waves of different wavelengths can not be exactly 
addressed. It seems that systematic restudies about this 
and many other turbulent flow fields are necessary so 
that the physics of the frequency splitting and merging 
can be correctly captured. 

Conclusions 
    A new and effective tool to inspect a complicated 
data string of a turbulent flow field was successfully 
developed by modifying the Morlet transform. The 
visibility of the resulting wavelet coefficient plot along 
the frequency direction is significantly recovered by 
employing an iterative filter and a simple strategy of 
removing the low frequency error of the Fourier 
spectrum. Many resulting turbulent flow details on the 
spectrum domain are first seen so that they can only be 
partially explained. It seems that systematic and well 
organized experiments are necessary to obtain a fully 
understanding about a turbulent flow field. Besides, 
further developments upon many fields related to 
complicated data strings can be started by employing the 
present modifications upon the Fourier spectrum and 
continuous wavelet transform. A series of study upon 
brain, neural, and earth quake signals are on the way. 
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Fig.1a The real part of the wavelet coefficient plot 

evaluated by the original Morlet transform 

 

 

 

 

 

 

 

 

 

Fig.1b The real part of the wavelet coefficient of the 

wave with a variable frequency by the present 

modified Morlet transform with  and 40 

uniform spaces to resolve the scale 

1=c

3.01.0 ≤≤ a . 
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Fig.2 The real part of the wavelet coefficient of a wave 

with a variable frequency plus two sine waves 

with fixed frequency by the present modified 

Morlet transform with  and 120 uniform 

spaces to resolve the scale . 

2=c

3.01.0 ≤≤ a

(3a) 

 

(3b) 

 

 

 (3c) 

 

 

Fig.3 The removed smoothed and non-periodic part of 

the original data strings at : (3a) schematic 

diagram; (3b) ; and (3c) dx 5.0= dx 3= , 

respectively. 

 

(4a) 

 

 

 

 

 

 

(4b) 

 

 

 

 

 

 

 

Fig.4 The spectrums corresponding to Fig.3a (4a) and 

Fig.3b (4b), respectively. 

 

Fig.5 The amplitude and real part of the wavelet 

coefficient plot of location, generated 

by the proposed modified Morlet transform, 

scale factor of spectrum windowing is 

dx 5.0=

1=c . 
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Fig.6 The amplitude and real part of the wavelet 

coefficient plot at  location, generated by the 

proposed modified Morlet transform, scale factor of 

spectrum windowing is . 

dx 3=

1=c
觀察一維紊流數據的一種有效之新拆解法 
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摘   要 

 
本文改進Morlet小波轉換法，使能輕易地看到許多原

來各果小波轉換法無法看到的內涵。本文使用 Jeng- 
Cheng的簡易 FFT法則，對數據兩端經內插法取 0點
後，用單調式三次曲線分段內插法重新分佈成均勻

點，使點數為 2的整數次方，要保證原數據間格內至

少要有 1點以上，再對一端取奇函數映射，如此可得

到幾乎沒有誤差的正確頻譜。經對頻譜取 Gaussian窗
口式加權法，再作逆 FFT轉換以得到有限頻寬濾波

(band- passed)數據，最後再取Morlet轉換。本文的測
試例子，說明所得的二為小波係數圖比原方法之結果

清析甚多，應用到流經一個鈍頭體的低速紊流之尾流

區的速度數據串，發現可以觀測到詳盡的波型變化。 
 
關鍵字：分析紊流數據之新工具，改進之Morlet小波
轉換法，頻譜之 Gaussian窗口加權，無低頻誤差頻譜。 
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