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ABSTRACT

It is proven that the classica Fourier series expansion can not completely capture all
information of a rea data string. A successive wave decomposition method via the harmonic
analysis is proposed. By assuming the amplitude to be changeable for a single sine function, the
least squares method is employed to search the minimized error measure function. Since the
extreme process is nonlinear, the initial guesses are provided via the Fast Fourier Transform and an
iteration procedure is proposed. Starting from the mode with the largest amplitude, dominated
modes are decoupled one by one. The spectrum of a single mode with variable amplitude is a
scattered band which shows the insufficient information reflected by the classical Fourier spectrum.
Keywords. High order harmonic analysis, successive decoupling, variable amplitude.

1. Introduction

Because of the rapid development of computer
technique, people can collect many data string
simultaneousy now. In near future, the nano
technology will further increase the number of data
strings exponentially. How to analyze these data
string automatically becomes an important issue. To
the authors' knowledge, the procedure includes data
validation to remove anomalies; decompose data

string into  smooth non-sinusoidal, pseudo-
sinusoidal, and random parts; and wave decomposi-

tion. In the wave

the classicad analysis,
decomposition step frequently employs the Fourier
series transformation to obtain the spectrum [1,2].
However, al the amplitudes and frequencies (or
wavelengths) given by the spectrum are constant.
The information about the phase angle is reflected

by the rea and imaginary part of the spectrum.
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Unfortunately, many people do not aware of the
necessity of removing the smoothing non-sinusoidal
part before employing the transformation and
frequently generate a spectrum containing an
unknown exponentialy decayed part in the low
frequency region. Moreover, it is impossible to
assure the periodic condition for every mode.
Consequently, people can only get qualitative
information of the sinusoidal part.

In order to remedy the above mentioned
drawbacks, there are two successive methods which
work very well. The first method is the matrix
pencil method which employs the singular value
decomposition to find the local amplitude, wave-
length and phase angle [3,4]. The other method is
the empirical mode decomposition proposed by
Huang et. a. [5,6]. The method employs the cubic
spline interpolation to fit the local maximum and
minimum points separately to estimate the upper
and lower boundaries of a data string. The average
of these two boundaries is an estimation of the low
frequency part and is refined by an iteration
the Hilbert
employed to estimate the amplitude, wavelength,

procedure. Finally, transform is
and phase angle. Although these two method works
successfully, the zero order approximation of the
matrix pencil method and the unknown numerical
part introduced in the step of estimating the upper
and lower boundaries point out the necessity of
devel oping a sophisticate high order method.
2. Contents

2.1 Analysis

Consider adata string of (x;,y;), i=012,..n,
where Ax; = x;,1 — X = constant, x denotes time or
other independent variable andyis the dependent
variable. The discrete Fourier series expansion
expands the data into
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n . .

27pi . 27pi

x f (%)= A, cos——+B,sih——

yi = f(x) ;)[ poos =+ Bpsin—"]
- , (D)

:Z[Ap cosZﬂIF_)Xi +Bpsin ﬂpxi]
p=0

with the assumption of adding a ghost point
Xns1 = Xp +AXaNd y,.1 = Yo, Where L =Xy —Xg -
In order to employ the discrete Fast Fourier
Transform (FFT) algorithm whose number of points
equals to 2 and reduce the error induced by
non-periodic boundary condition, a previous work
[7] find points where y; <0, y;,1 =0 (or y; >0,
yi;1 <0) around two ends, and takes the points
where y=0 in terms of the linear or high order
interpolation as new end points. Subsequently, the
data is reconstructed to be of points whose number
is equal to 2¥ via the following monotonic cubic
spline interpolation is employed [8].
Y(X)=C(x=X)*+ ¢, (x=%)* + G (X~ %) + G

G =YG =Y Sap=ah (2
)§+1_ >§
38,15 =2Y ~ Yia Yo+ Y1 2S00
c,= ) Cy=
X=X (%= %)

with

, 1 ! k
Yi =Sgn(ti)mln[zl Pi—1/2+ Piyas2 | max(k | s I,Elti))]

Pi1/2=5-1/2+di 17204 ~%_1)

Pi1/2 = Se1/2+ i1/ 206 = %41)

t, =minmod[ p_,,,(X), Pr.yy2(X)]

di+1/2 =min mOd(di ‘di+1)‘ di = M, (3)
X~ X1

S = miand[S—1/2‘S+llz]

where k> 4for smooth data and
Vi =Yia, 0 1Yia-2yi+yiake @
or |Vi2-2yj+yilkke

in whicheis an user specified infinitessimal positive
constant. After make sure that number of points is
of 2X, the simple FFT agorithm is employed to
find the spectrum. For a dominate mode whose
mode number is j , the corresponding wavelength is
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estimated as

XN — Xo
j

where xg and x5 ae new end points with

Aj=

()

N=2X+1. The amplitude estimation is directly
read from the spectrum.

In fact, the formula of Eq.(1) is not perfect for
adata string which may be in form of

ZA (%) sm(

If m<n and al the amplitudes, frequencies, and

"( X +0, (%)) (6)

phase angles are constants, and if the following
equalitiesarevalid

A, =yAS+B3, f,=p, @

0, =tan"[B, / Ap]

Eqg.(1) is equal to Eq.(6) exactly. In general, Eq.(1)
is not equal to Eq.(6) because all the equalities of
Eqg.(7) may not be satisfied. In other words, Eq.(7)
is a set of constraint rather than a system of
resulting formulas. The reason is that, even for the

situation of fp's and Hp's = constants, the

resolution of data point may not be sufficient to
ensure the following conditions for all modes
fp =p,
m<n,

0<p<n pel
8

where| denotes the integer set.
As noted in Ref.[7], the smooth non-sinusoidal

part always introduces undesired low frequency part.

For example, Fig.1 is a smooth data string where
the periodic condition is obviously violated. Figure
2 is the corresponding spectrum which shows an
zigzag and exponentially decayed distribution. So
far the method of exactly removing the smooth
non-sinusoidal part is still an open problem and all
the existing methods are not very popular.
Therefore, many people employing the spectra
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analysis may not aware of this contamination
involving in the spectrum.
2.2 Iteration Procedurefor Constant Parameters
In order to demonstrate the proposed algorithm,
the simplest case is shown firstly. Consider the case
that al the amplitudes, frequencies, and phase
angles are constant. Following the harmonic
analysis, the error measure function is defined as

follows.

o —Z[y. Ap s 2 ANVRIL 9

i=0

Although setting the partial derivatives of the
function with respect to parameters A, f, and

6, will generate the desired apprOX|mat|on in a

least squares sense, it is a highly non-linear extreme
procedure which may or may not leads to a local
minimum rather than the global minimum.
Fortunately, both Ajand f,can be estimated as
stated in Eq.(5) and the spectrum find from the

method of Ref.[7], a searching loop to find the true
minimumof 1, viathe following procedure:

1. Estimate Ajand f,.
2. Change 6,to search the minimum |I,, this

step isthe inner loop.

3. Use the variation of f, as the medium loop
and the variation of A, as the outer loop, and

then search the minimum I b

2.3.Variable Amplitude Version

Because this is only but a first study, variations
of fo and 6, are not considered here. The error

measure function is now defined as
n
=D 1Yi —(Agp + ALpX+ Ag pX2 + Ag pX°)
i=0 (10)

7 o X
SR},

2
xsin{ X =X —X¢

where x; =(xg+Xy)/2. The outer loop now can

be replaced by the solution of
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Ay o Ay
o, p Ay p

where fo and 0, are fixed. Then, the iteration

al al
-0, -0 (11)
oAy, | OPgy

procedure of section 2.2 can be employed.
3. Resultsand Discussions

One of the test data of Ref.[7] is the vertical
displacement at the central point of a steel specimen
excited by a hammer. A segment of the original data
isdrawn in Fig.3 and the corresponding spectrum is
shown in Fig.4. The low frequency part are nearly
vanishing because of the approximation of Ref.[7]
does remove most low frequency error. After
applying two cycles of the present successive
decoupling procedure for constant parameters, the
resulting waves are shown in Figs5 and 6,
respectively. The corresponding spectrum of the
remaining data is shown in Fig.7. Although the
remaining data is somewhat like the white noise,
there is still some minor peak around the original
mode. This means that the amplitude of the
dominate mode may be dlightly varied. This
example shows the necessity of applying the
variable parameter scheme.

The second test case to demonstrate the
variable amplitude version of the successive
decouple procedure is atide wave data. The datais
shown in Fig.8 which shows that many tide waves
with dightly different wavelengths form a beat
wave. The remaining wave after applying twelve
cycles of the decouple procedure is aso shown in
the figure. Their corresponding spectrums are
shown in Fig.9 where the original data's spectrum
shows the wavelength clustering together and the
remaining waves still involve many minor waves.
The fact of many waves in the remaining part
reflects that the version of variable amplitude is still
not enough and the decouple procedure should
contain variable wavelength and phase angle. All
the results of the twelve cycles are listed in Table |
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which indicates serious variation of the amplitude.
The resulting waves of the first three modes are
shown in Figs.10, 11 and 12 which involve serious
amplitude variation. The corresponding spectrums
of al the decoupled waves are shown in Figs.13
through 16, respectively. From these spectrum
distributions, it is clear that every spectrum of each
wave is not longer a single peak in the spectrum
domain. The variation of amplitude splits the single
peak into severa minor peaks around the largest
peak.

The above discussion shows that the classical
FFT cannot provide all information of a data string.
Therefore, a new analytical tool to involve variable
amplitude, wavelength, and phase angle is
necessary. This fact indicates that the direction of
present study is positive.

4. Conclusions

A new high order harmonic analysis is proposed.
An iteration procedure is constructed to overcome
the difficulty of highly nonlinearity of the
minimizing process. Numerical studies show that
the present study is not enough and a still more
complete version of the high order harmonic
analysisis necessary.
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Table |

p= ﬂ,p 9p Amp.(AO’p,ALp,AZ’p,A3’p)(mm)

1 099647 10054 -221.196 -94.405 -365953 524.710
2 107400 3319 -195198 328721 50.0977 295.263
3 112301 9018 -56.0107 -10.6963 21.2860  84.1467
4 102267 1391 351338 -286496 151116 -14.7617
5 098073 7591 111557 -62.6774 584167 -285127
6 105074 10142 -125623 -257506 -12.0562 41.2189
7 116020 7727 -162968 202689 281911 -25.2297
8 094945 2070 108695 48186 25490 -4.8910
9 101152 6585 -8.6861 115764 -41.2419 24.6887
10 161886 16189 -1.6873 -36.8520 -9.6339  20.5446
11 137352 1923 -38086 -24.1370 -14.2167 -2.9655
12 087808 .8605 39353 -21.9143 -12341 21218

* The phase angle = 276,/ , if 6,<4p .

Otherwiseitisequal to 270, —1p)/ 4,
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Mean water level :
tide wave smoothed by iterative Gaussi
filter with sigma = 90 days (2001/1/01-2001/12/31)
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Fig.1 An example of smooth non-sinusoidal data.

Exponential decayed spectrum of
smooth non-sinusoidal part
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Fig.2 The corresponding spectrum of Fig.1.

0.0015 |- red line : original data

0.001 |-

e
0 0.05 . 0.1 0.15
time

Fig.3 The segment plot of the original data of the
vertical displacement.
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m=2048
red line :real part
green line : imaginary part
3 blue : absolute
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Fig.4 The spectrum of Fig.3 generated by the
method of Ref.[7]
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thin red line : original data

e b b 1l
0.025 0.05 0.075 0.1 0.125 0.15
time

0002 heavy black line : remaining wave
I dotted blue line : ) =0.0140386, 6/A =-0.00123086
[ amplitude = 3.1816475*10-4 = estimated by FFT.
0.0015 |- wave length estimated by FFT = 0.0140282
[ The dotted line is the best fit.
o.001 |
e [
g [
L A
29005y ‘\\ I
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a i
0 1
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0.0005 |- [ i}’\ \" |
-0.001 |
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Fig.5 The result of the first cycle decouple: dotted
line is the removed mode and heavy line is
the remaining wave.

thin blue line : 1st cycle's remaining data

0.002 - heavy red line : remaining wave
I dotted black line : 3, =0.0884549, ¢/, =-0.0825329
[ amplitude = 1.7284065*10-4 = estimated by FFT.
0.0015 - wave length = 0.8884549 estimated by FFT
[ The dotted line is the best fit.
0.001 -
[
o [
E -
0,0005 |-
Qo -
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0.0005 |-
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ST IR ENENENIEN SR RS A |
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Fig.6 The result of the second cycle of decouple:
the thin line isthe first cycle’'s remaining part,
the dotted line is the removed wave of the
second cycle, and the heavy line is the
remaining wave of the second cycle.

0.0002 . -
| dotted line : original spectrum
thin solid : after removing 3 waves
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0,0001 [
1=
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Fig.7 The spectrum of the original data is the dotted
line and the remain data’'s spectrum is solid
line.
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Fig.8 The origina data and the remaining wave
after 12 cycles of wave removing.
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Fig.9 Spectrum of the original data and the final
remaining waves
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Fig.10 The first mode decoupled from the original
data.
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Fig.11he second mode decoupled from the data.

Fig.14 Spectrum of the second three modes
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Fig.12 The third mode decoupled from the data Fig.15 Spectrum of the third three modes.
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mode-no. Fig.16 Spectrum of the fourth three modes.

Fig.13 Spectrum of the first three modes



