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ABSTRACT 
     It is proven that the classical Fourier series expansion can not completely capture all 
information of a real data string. A successive wave decomposition method via the harmonic 
analysis is proposed. By assuming the amplitude to be changeable for a single sine function, the 
least squares method is employed to search the minimized error measure function. Since the 
extreme process is nonlinear, the initial guesses are provided via the Fast Fourier Transform and an 
iteration procedure is proposed. Starting from the mode with the largest amplitude, dominated 
modes are decoupled one by one. The spectrum of a single mode with variable amplitude is a 
scattered band which shows the insufficient information reflected by the classical Fourier spectrum. 
Keywords: High order harmonic analysis, successive decoupling, variable amplitude. 
 

摘       要 

    本文證明傳統的快速傅式級數無法完美地補捉一般數據串的資訊。本文應用高階的調和函數分析

法，發展出疊代式依次拆解複合波法，一次拆解一個波，並允許振幅可隨時間改變。數值測試顯示振

幅改變的波會在頻譜圖上造成對應於頻率之主頻旁含有數個小模式的訊息，同時也可證明完美的拆解

法需要允許所有的參數都可變。 

關鍵詞：高階調和函數分析法，疊代式最小平方誤差法，可變振幅法。 

 
 

1. Introduction 
Because of the rapid development of computer 

technique, people can collect many data string 
simultaneously now. In near future, the nano 
technology will further increase the number of data 
strings exponentially. How to analyze these data 
string automatically becomes an important issue. To 
the authors’ knowledge, the procedure includes data 
validation to remove anomalies; decompose data 

string into smooth non-sinusoidal, pseudo- 
sinusoidal, and random parts; and wave decomposi- 
tion. In the classical analysis, the wave 
decomposition step frequently employs the Fourier 
series transformation to obtain the spectrum [1,2]. 
However, all the amplitudes and frequencies (or 
wavelengths) given by the spectrum are constant. 
The information about the phase angle is reflected 
by the real and imaginary part of the spectrum. 



2004中國航太學會/中華民航學會聯合學術研討會             台中，中華民國九十三年十二月 
2004 AASRC/CCAS Joint Conference                     Taichung, December,2004 
 

2 

Unfortunately, many people do not aware of the 
necessity of removing the smoothing non-sinusoidal 
part before employing the transformation and 
frequently generate a spectrum containing an 
unknown exponentially decayed part in the low 
frequency region. Moreover, it is impossible to 
assure the periodic condition for every mode. 
Consequently, people can only get qualitative 
information of the sinusoidal part. 

In order to remedy the above mentioned 
drawbacks, there are two successive methods which 
work very well. The first method is the matrix 
pencil method which employs the singular value 
decomposition to find the local amplitude, wave- 
length and phase angle [3,4]. The other method is 
the empirical mode decomposition proposed by 
Huang et. al. [5,6]. The method employs the cubic 
spline interpolation to fit the local maximum and 
minimum points separately to estimate the upper 
and lower boundaries of a data string. The average 
of these two boundaries is an estimation of the low 
frequency part and is refined by an iteration 
procedure. Finally, the Hilbert transform is 
employed to estimate the amplitude, wavelength, 
and phase angle. Although these two method works 
successfully, the zero order approximation of the 
matrix pencil method and the unknown numerical 
part introduced in the step of estimating the upper 
and lower boundaries point out the necessity of 
developing a sophisticate high order method. 

2. Contents 
2.1 Analysis 

Consider a data string of niyx ii ,...2,1,0),,( = , 
where =−=∆ + iii xxx 1 constant, x denotes time or 
other independent variable and y is the dependent 

variable. The discrete Fourier series expansion 
expands the data into 
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with the assumption of adding a ghost point 
xxx nn ∆+=+1 and 01 yyn =+ , where 01 xxL n −= + .  

In order to employ the discrete Fast Fourier 
Transform (FFT) algorithm whose number of points 

equals to k2 and reduce the error induced by 
non-periodic boundary condition, a previous work 
[7] find points where 0,0 1 ≥≤ +ii yy  (or ,0≥iy  

01 ≤+iy ) around two ends, and takes the points 
where 0=y  in terms of the linear or high order 

interpolation as new end points. Subsequently, the 
data is reconstructed to be of points whose number 

is equal to k2  via the following monotonic cubic 
spline interpolation is employed [8]. 
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where 4≥k for smooth data and 
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in which ε is an user specified infinitesimal positive 

constant. After make sure that number of points is 

of k2 , the simple FFT algorithm is employed to 
find the spectrum. For a dominate mode whose 
mode number is j , the corresponding wavelength is 
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estimated as 

j
xxN

j
0−

=λ                        (5) 

where 0x and Nx  are new end points with 

12 += kN . The amplitude estimation is directly 
read from the spectrum. 

In fact, the formula of Eq.(1) is not perfect for 
a data string which may be in form of 
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If nm ≤  and all the amplitudes, frequencies, and 

phase angles are constants, and if the following 
equalities are valid 
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Eq.(1) is equal to Eq.(6) exactly. In general, Eq.(1) 
is not equal to Eq.(6) because all the equalities of 
Eq.(7) may not be satisfied. In other words, Eq.(7) 
is a set of constraint rather than a system of 
resulting formulas. The reason is that, even for the 

situation of s'pf and s'pθ = constants, the 

resolution of data point may not be sufficient to 
ensure the following conditions for all modes 
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where I denotes the integer set.  
As noted in Ref.[7], the smooth non-sinusoidal 

part always introduces undesired low frequency part. 
For example, Fig.1 is a smooth data string where 
the periodic condition is obviously violated. Figure 
2 is the corresponding spectrum which shows an 
zigzag and exponentially decayed distribution. So 
far the method of exactly removing the smooth 
non-sinusoidal part is still an open problem and all 
the existing methods are not very popular. 
Therefore, many people employing the spectral 

analysis may not aware of this contamination 
involving in the spectrum. 

2.2 Iteration Procedure for Constant Parameters 
    In order to demonstrate the proposed algorithm, 
the simplest case is shown firstly. Consider the case 
that all the amplitudes, frequencies, and phase 
angles are constant. Following the harmonic 
analysis, the error measure function is defined as 
follows. 
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Although setting the partial derivatives of the 
function with respect to parameters ,, pp fA and 

pθ will generate the desired approximation in a 

least squares sense, it is a highly non-linear extreme 
procedure which may or may not leads to a local 
minimum rather than the global minimum. 
Fortunately, both pA and pf can be estimated as 

stated in Eq.(5) and the spectrum find from the 
method of Ref.[7], a searching loop to find the true 
minimum of pI  via the following procedure: 
1. Estimate pA and pf . 
2. Change pθ to search the minimum pI , this 

step is the inner loop. 
3. Use the variation of pf  as the medium loop 

and the variation of pA  as the outer loop, and 
then search the minimum pI . 

2.3.Variable Amplitude Version 
   Because this is only but a first study, variations 
of pf  and pθ  are not considered here. The error 

measure function is now defined as 
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where 2/)( 0 Nc xxx += . The outer loop now can 

be replaced by the solution of  
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where pf  and pθ  are fixed. Then, the iteration 

procedure of section 2.2 can be employed. 

3. Results and Discussions 
  One of the test data of Ref.[7] is the vertical 
displacement at the central point of a steel specimen 
excited by a hammer. A segment of the original data 
is drawn in Fig.3 and the corresponding spectrum is 
shown in Fig.4. The low frequency part are nearly 
vanishing because of the approximation of Ref.[7] 
does remove most low frequency error. After 
applying two cycles of the present successive 
decoupling procedure for constant parameters, the 
resulting waves are shown in Figs.5 and 6, 
respectively. The corresponding spectrum of the 
remaining data is shown in Fig.7. Although the 
remaining data is somewhat like the white noise, 
there is still some minor peak around the original 
mode. This means that the amplitude of the 
dominate mode may be slightly varied. This 
example shows the necessity of applying the 
variable parameter scheme. 
    The second test case to demonstrate the 
variable amplitude version of the successive 
decouple procedure is a tide wave data. The data is  
shown in Fig.8 which shows that many tide waves 
with slightly different wavelengths form a beat 
wave. The remaining wave after applying twelve 
cycles of the decouple procedure is also shown in 
the figure. Their corresponding spectrums are 
shown in Fig.9 where the original data’s spectrum 
shows the wavelength clustering together and the 
remaining waves still involve many minor waves. 
The fact of many waves in the remaining part 
reflects that the version of variable amplitude is still 
not enough and the decouple procedure should 
contain variable wavelength and phase angle. All 
the results of the twelve cycles are listed in Table I 

which indicates serious variation of the amplitude. 
The resulting waves of the first three modes are 
shown in Figs.10, 11 and 12 which involve serious 
amplitude variation. The corresponding spectrums 
of all the decoupled waves are shown in Figs.13 
through 16, respectively. From these spectrum 
distributions, it is clear that every spectrum of each 
wave is not longer a single peak in the spectrum 
domain. The variation of amplitude splits the single 
peak into several minor peaks around the largest 
peak. 
   The above discussion shows that the classical 
FFT cannot provide all information of a data string. 
Therefore, a new analytical tool to involve variable 
amplitude, wavelength, and phase angle is 
necessary. This fact indicates that the direction of 
present study is positive. 

4. Conclusions 
   A new high order harmonic analysis is proposed. 
An iteration procedure is constructed to overcome 
the difficulty of highly nonlinearity of the 
minimizing process. Numerical studies show that 
the present study is not enough and a still more 
complete version of the high order harmonic 
analysis is necessary. 
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Table   I 

 
=p    pλ      pθ    Amp. ( pppp AAAA ,3,2,1,0 ,,, ) (mm) 

1  0.99647  1.0054  -221.196  -94.405   -365.953   524.710 

 2  1.07400   .3319  -195.198   32.8721   50.0977   295.263 

 3  1.12301   .9018  -56.0107  -10.6963   21.2860   84.1467 

 4  1.02267   .1391   35.1338  -28.6496  151.116   -14.7617 

 5  0.98073   .7591   11.1557  -62.6774   58.4167  -28.5127 

 6  1.05974  1.0142  -12.5623  -25.7506  -12.0562   41.2189 

 7  1.16020   .7727  -16.2968   20.2689   28.1911  -25.2297 

 8  0.94945   .2070   10.8695    4.8186    2.5490   -4.8910 

 9  1.01152   .6585   -8.6861   11.5764  -41.2419   24.6887 

10  1.61886  1.6189   -1.6873  -36.8529   -9.6339   20.5446 

11  1.37352   .1923   -3.8086  -24.1370  -14.2167   -2.9655 

12  0.87808   .8605    3.9353  -21.9143   -1.2341    2.1218 

* The phase angle = pp λπθ /2 , if pp λθ < . 
Otherwise it is equal to ppp λλθπ /)(2 −  

 
 

 
 
 
 
 
 
 
 
Fig.1 An example of smooth non-sinusoidal data. 
 
 
 
 
 
 
 
 
Fig.2 The corresponding spectrum of Fig.1. 
 
 
 
 
 
 
 
 
Fig.3 The segment plot of the original data of the 

vertical displacement. 
 
 
 
 
 
 
 
 
Fig.4 The spectrum of Fig.3 generated by the 

method of Ref.[7] 
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Fig.5 The result of the first cycle decouple: dotted 
line is the removed mode and heavy line is 
the remaining wave. 

 
 
 
 
 
 
 
 
 
 

 
Fig.6 The result of the second cycle of decouple: 

the thin line is the first cycle’s remaining part, 
the dotted line is the removed wave of the 
second cycle, and the heavy line is the 
remaining wave of the second cycle. 

 
 
 
 
 
 
 
 
 
Fig.7 The spectrum of the original data is the dotted 

line and the remain data’s spectrum is solid 
line. 

 
 
 
 
 
 
 
 
 

 
 
Fig.8 The original data and the remaining wave 

after 12 cycles of wave removing. 
 
 
 
 
 
 
 
 
 
 
Fig.9 Spectrum of the original data and the final 

remaining waves 
 
 
 
 
 
 
 
 
 
 
Fig.10 The first mode decoupled from the original 

data. 
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Fig.11he second mode decoupled from the data. 
 
 
 
 
 
 
 
 
 
 
Fig.12 The third mode decoupled from the data 

 
 
 
 
 
 
 
 
 
 

Fig.13 Spectrum of the first three modes 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
Fig.14 Spectrum of the second three modes 
 
 
 
 
 
 
 
 
 
Fig.15 Spectrum of the third three modes. 
 
 
 
 
 
 
 
 
 
Fig.16 Spectrum of the fourth three modes. 
 


