
第二十八屆中華民國力學學會年會暨全國力學會議      台北台大應力所，中華民國九十三年十二月 

The 28th Conference on Theoretical and Applied Mechanics                 Taipei, Dec,2004 

           

 1

應用疊代式濾波法於潮汐數據修補的初步研究 

The First Study upon Tide Data Repairing via Iterative  
Wave Decomposition Method  

 
Yih Nen Jeng (鄭育能) 

Professor of Aero. and Astro. Dept., National Cheng-Kung Univ., Taiwan 
Email: z6208016@email.ncku.edu.tw 

Yueh-Jiuan G. Hsu (徐月娟) 
Director of Marine Meteorology Center, Central Weather Bureau, Taiwan 

You-Chi Cheng (鄭又齊) 
Engineer, Zu-Soft company, Taipei, Taiwan 

 
ABSTRACT 

 
The iterative filter using the Gaussian smoothing method is employed to decompose and repair a 

tide data string composed of many tidal wave components. Since the iterative filter can ignore the 
effect of missing data to certain extent, the tidal wave components can be successively decomposed. 
However, because the employed wave decomposition method cannot decompose a composite wave 
found by two wave components whose frequencies close to each other, three beats are found. For 
those wave components whose wavelengths are larger than 2  times the drop-out period, the 
missing data can be satisfactorily achieved by merely applying the filter. For a longer period of 
missing data, an iterative technique is developed to repair the data. The tide data of the Houbihu 
harbor in Pin-Tong at south Taiwan in the period of Jan. 1 through Dec. 31/2001 is employed to 
demonstrate the procedure of wave decomposition and data repairing. 
Keywords: Iterative filter, wave decomposition, data repairing. 
 

INTRODUCTION 
 

Because of the rapid development of 
computer technique, people can collect many 
data string simultaneously now. In near future, 
the nano technology will further increase the 
number of data string exponentially. Today, 
before analyze a data string, people often 
classify, validate, and edit the data which 
exclude unavailable part, arrange the available 
part. For example, in Ref.[1], six types of 
random data anomalies are listed and are 
recommended to exclude them manually. 
However, as the number of data string increases 
to a certain level, it is impossible to do such a 
data qualification manually again. Therefore, 
the automatically data qualification procedure 
becomes more and more important and urgent.  

In this study, the procedure of repairing the 
data drop-outs, which is one of the data 

anomalies, is examined. It is believed that, 
during the procedure, one can learn how to 
accumulate necessary fundamental insights of 
the automatic data qualification. 

The other important issue of data analysis is 
how to decompose a composite wave which 
may or may not involving data drop outs. Since 
every components of the composite wave may 
change from time to time and involves data 
anomaly, we can not directly employ classical 
analyzing method. To the authors’ knowledge, 
the iterative filtering method of Ref.[2-4] has 
the potential to treat this complicate issue. 
Therefore, this study employs it as a tool to do 
the data repairing. 
   For a data string without serious data 
anomaly, there are two available methods 
proposed to decompose a time-series data 
string consist of many waves with different and 
variable wavelengths: the matrix pencil method 
[5,6] and empirical mode decomposition 
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methods of Hwang et al.[7,8]. The former 
method is successively applied in the 
electro-magnetic wave problem and the latter is 
widely used in the surface wave problems. 
Unfortunately, the matrix pencil method is a 
zero-th order method which can not take care 
of the problem with rapidly varying amplitude, 
frequency, and phase angle. The latter method 
may or may not suffer by the artificial 
numerical addition introduced by the cubic 
spline interpolation. Although the employed 
iterative filtering method has the limitation that 
the data string should contain a finite frequency 
gap around the cut-off frequency, the method 
has the property of Fourier serious expansion 
on an unstructured mesh system and can be 
treated as a semi-analytic method. In other 
words, it has the intrinsic property that a data 
drop out may be ignored by the method in some 
independent spectral range so that it can repair 
the isolated data drop as will be shown in the 
following content. 

Tides around Taiwan result from shoaling 
effects of tidal constituents in the Pacific Ocean 
propagated westward to the continental shelf. 
According to the harmonic analyses of tide data 
at Houbihu harbor in southern coast of Taiwan, 
the Luni-solar Diurnal (K1) and the Principle 
Solar Diurnal (O1) are the largest diurnal tidal 
components, and the Principle Lunar (M2), the 
Principle Solar (S2), the Larger Lunar Elliptic 
(N2) and the Luni-solar Semidiurnal (K2) are 
the largest semidiurnal tidal components. 
Besides, the monthly, fortnightly, annual, 
semiannual and the long-term (18.61 years) 
variations of water level are also included. 

                                                                       
ANALYSIS 
 
Iterative Filter 
    Consider a set of data ( , ), 0,i ix y i =  1,2,...,n  
to be approximated by a polynomial. The 
Gaussian smoothing method employs a 
zero-degree approximation to minimize the 
following error measure function, 
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Where the point k  may or may not be belong 
to points of 0,1,...,j n= . The resulting smoothing 
becomes the following form,  
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This formula can be applied to an irregular 
point distribution. Assume that a data string y  
defined on uniform spacing ix i x= ∆ , it is 
expanded in form of 
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where ( )j jy λ ’s are wave components consist of  
sine or cosine functions. After employing the 
Gaussian smoothing method, the resulting data 
string can be written in the following form: 
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where ( )S y  denotes the linear smoothing 
operator, ( / ,0)ja σ λ  is the attenuation factor  
reflecting the effect of S  upon the j -th wave. 
In Ref.[2], it is shown that 

0 ( / ) 1ja σ λ≤ ≤                      (5) 
where  

2 2 2( / ) exp 2 / 1, 0j ja σ λ π σ λ σ ≈ − ≤ ∀ >  ,         (6) 

In Ref.[2], the first smoothed waveform of the 
data string is denoted as 1y  and the residual 
waveform, '

1y , is : 

'
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The same smoothing can be applied to the first 
residual waveform again to obtain the second 
smoothed waveform,  
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and the second residual wave,  
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This procedure can be applied up to the m -th 
cycle and the residual and accumulated 
smoothed waves of the m -th times yield: 
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Assume that a data string composed of two 
wave zones separated by a finite 2 1c cλ λ λ∆ = − , 
where 1cλ  is the shortest wavelength of the 
high frequency part and 2cλ  is the longest 
wavelength of the low frequency part. From 
Eqs.(3) and (6), the following equations can be 
constructed  
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After solving these equations, one can get the 
necessary iteration number m and smoothing 
factor σ . For the sake of clarity, the iterative 
procedure is listed below [2]. 
1. Smooth the original data to get the first 

smoothed and high frequency parts using the 
Gaussian smoothing with the given σ . 

2. Smooth the high frequency part to obtain the 
second smoothed and high frequency part. 

3. Repeat the same procedure for m  times. 
4. The final high frequency part is the desired 

high frequency part and the difference 
between the original data and final high 
frequency part is the desired smoothed part. 

This iterative filter has a limitation that the 
frequency gap should be finite and large 
enough. In other words, for those component 
waves whose wave lengths close to each other, 
the beat wave will be obtained. Fortunately, this 
beat can be further analyzed by checking its 
spectrum. In this study, the simple procedure of 
generating spectrum introduced in Ref.[10] is 
employed. 
Data Repairing  

Note that the given factor σ  in the 
iterative procedure should be properly given to 
achieve a suitable filtering job and can be fixed 
to a certain value by iteration. If the data 
drop-outs are at isolated points or only but a 
few continuous points, the iteration can be done 
automatically.  

For those missing data running over a long 
period, the following simple strategy is 
proposed. Although the iterative filter can give 
a solution for such a data drop-outs, the missing 
data will inevitably introduce certain error 
within a region whose length is approximately 
equal to 2σ  (or one wavelength) around the 
missing points. Beyond the region, the resulting 
wave component data is nearly not influenced. 
Consider the data drop-outs of a beat wave 
shown in Fig.1. Basing on the above mentioned 
fact, most data remote from the missing point 

can be employed to be a reference data string. 
Around the data drop-out region, the upper and 
lower envelopes are constructed by connecting 
the local maximum and minimum points via the 
following monotonic cubic spline interpolation 
[9,10], respectively. 
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Next, these envelopes are employed to scale up 
the wave data outside the drop-out region and 
the scaled data is shown as thin line whose 
amplitude is almost constant. Third, as shown 
in Fig.2, a segment of scaled wave data within 
the range marked by two arrows is shift to the 
drop-out region and is shown as dotted line. 
Fourth, the shift data is scaled back as shown in 
Fig.3. Fifth, in the drop-out region, this shifted 
data is chosen as the repaired data component. 
Note that the original wave component is 
different from the repaired one outside the 
drop-out region because the original one is 
seriously affected by the missing data. 
   The same procedure is applied to all wave 
components except the highest frequency part 
which is referred as noise. For those wave 
components with long enough wave length, the 
short period data drop-out region is 
automatically repaired and need not to treat it. 
Finally, the repaired data of all wave 
components are summed up to replace the data 
drop-out points. However, as the above 
mentioned discussion about Fig.3, the repaired 
data may or may not consist with the existing 
data. Therefore, the above procedure should be 
repeatedly applied until the slopes at all end 
points of every drop-out region are smooth. 
 
    RESULTS AND DISCUSSIONS 
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The tide data of the Houbihu harbor in 

Pin-Tong at south Taiwan in the period of Jan.1 
through Dec. 31/2001 is employed to illustrate 
the proposed repairing procedure. The data is 
the water level in milli-meter recorded at every 
hour. It contains many isolated data drop-out 
points, a three-hour missing period, a one day 
drop-out, and a two day drop-out region. The 
Original data and the result of employing 

90σ = and 30 are shown in Fig.4. At the missing 
point, the original data takes a zero value. It 
seems that the first two long waves are not 
affected by the data drop-outs. These two 
waves are principally generated by the 
variation of the northern Pacific Ocean current 
heading the Taiwan Strait that is modulated by 
the location of sun heating. The result of 
employing 10,5σ =  is shown in Fig.5, and 

3σ =  in Fig.6. For these waves generated 
by 3σ ≥ , the isolated, short period, and long 
period data missing are all automatically 
repaired. It seems that, for those waves 
decoupled with a σ larger than the drop-out 
period (or wave length larger than 2 times the 
period), the iterative filter can automatically 
repair the data. The resulting long wave of 
employing 1σ =  is shown in Fig.7 and some 
portion of those long waves employing 0.4,σ =  
0.25,0.125 and the final high frequency part are 
shown in Fig.8. The last three long waves are 
beats composed of two single waves whose 
frequency close to each other. For these high 
frequency waves, except the final high 
frequency part which is considered as the noise, 
the isolated and short period data are 
automatically repaired. Fig.9a is one part of the  
repaired data. For the long period data drop-out, 
two repairing procedures are employed twice 
and the results are shown in Fig.10a and 10b, 
respectively. Although there is not answer how 
the correct data is, it seems that the result of the 
second cycle captures the trend of neighboring 
data and is better than that of the first cycle. 

 In order to inspect the detail of these 
pseudo-sinusoidal wave components except the 
non-sinusoidal part decoupled by 90σ = , their 
spectrums evaluated by the method of ref.[10] 
are shown below. Note that the non-sinusoidal 
part always generates an exponentially 
decreasing low frequency part and is not easy  
be understood in the spectrum domain. All the 
pseudo-sinusoidal waves are carefully cut to be 
zero at two ends via the linear interpolation 
without modifying the data. Consequently, all 
the undesired low frequency part is eliminated. 

  Figure 11 shows the spectrum of the wave 
decoupled by 30,10,5,3,1,0.4,0.25,σ = and 0.125 , 
respectively. In Fig.11a, the wide dominate 
band shows that the wavelength is not 
constantly over the computed range. The first 
peak (amplitude is about 11 mm and wave 
length is about 26.92 days) of Fig.11b is related 
to the MM and MSM tidal components (the 
amplitudes are 8.6 and 10.1 mm and 
wavelengths are 27.554 and 31.82 days, 
estimated by the harmonic analysis in the range 
of 2002/08/01 through 2004/07/31) but has 
certain error. However, spectrums shown in 
Figs.11c through 11e, there is no obviously 
dominant frequency. It seems that this harbor’s 
long wavelength tide is seriously influenced by 
the northern Pacific Ocean current and 
complicated weather so that all the other long 
wavelength tide cannot be seen. 

In Fig.11f, which is corresponding to the 
beat of Fig.8 decoupled by 0.4σ = , there are two 
dominant frequencies (23.768 hrs for the larger 
peak and 25.596 through 25.845 hrs for the 
smaller peak) and close to the K1 (215.2mm 
and 23.934 hrs) and O1 (199mm and 25.819 
hrs) tidal components with errors induced by 
insufficiently fine data resolution. As to the 
amplitude estimation, the estimated peaks are 
70 and 52 mm (the maximum amplitude 
indicated in Fig.8 is about 600 mm which are a 
weighted sum of every modes) which are 
different from that estimated by the harmonic 
analysis shown before. A careful inspection 
upon Fig.11f reveals that both peaks are not 
simple impulse which reflects amplitudes 
change slowly and wavelengths may be not of 
constant values. The O1 further indicates that it 
is a beat formed by two wave components. The 
authors believe these are the reason of 
difference of amplitude estimation between the 
present method and harmonic analysis. 

Figure 11g shows the semidiurnal wave beat 
(the amplitude and wavelength of the larger 
peak are 111mm and 12.425 hrs, respectively, 
and that of the smaller peak are 39 mm and 
11.960 hrs). The related waves estimated by the 
harmonic analysis are M2 (259.9mm and 
12.420 days), S2 (115.5mm and 12 hrs), K2 
(30.5 mm and11.967 hrs), and N2 (53.9 mm 
and 12.568 hrs) tidal components with error 
causing by insufficiently fine data resolution. 
That shown in Fig.11h is the anther beat 
formed by similar tidal components. The fact 
that the beat of Fig.11h can be separated from 
the beat of Fig.11g reflects that the former is a 
more complicated combination than the latter 
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and need a more robust decomposition method 
to decouple them.  

The above discussion shows that the 
proposed data repairing procedure upon every 
wave component separately can effectively 
repair the data and capture the dominant tidal 
components very well. 
 
CONCLUSIONS 
 
    The iterative filtering procedure can 
effectively decompose tidal wave components. 
All the dominant tidal components are captured 
in the form of beats. The proposed data 
repairing method can also effectively recover 
isolated data drop-outs. It seems that this 
procedure can be applied to many other fields 
provided that the beats can be further 
decomposed into single wave components. 
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應用疊代式濾波法於潮汐數據修補的

初步研究 
鄭育能 成功大學航太系教授 

徐月娟 中央氣象局海象測報中心主任  

鄭又齊 儒園系統公司 工程師 

摘        要 
本文應用疊代式高斯濾波器拆解組合成潮汐之波形，發

現可以拆解出一組全日潮和兩組半日潮的複合波，組合成全

日潮之一個波的振幅可能會有緩慢的變化。本文也對各波形

發展出空缺數據之修補法。對於單一和少數連續數據之空缺

點，疊代式濾波器可以自動修補之。對於較長時間的空白數

據點，波長大於空缺時間之波形也可以自動修補之。針對較

短波長的波形，本文發展出針對各波形修補的簡易方法。本

文並以屏東後壁湖漁港的水位數據為例子，說明拆解和修補

過程，初步結果令人滿意。 

 

關鍵詞：疊代型濾波器，潮汐波形拆解，空缺數據修補法。 
 

 

 

 

 

 

 

 

 

 

 

 

Fig.1 The schematic diagram of data repairing. For the 
central line: 0 denotes regular data, -50 is drop-out 
point; dotted lines are upper and lower envelopes; 
heavy line is the original decoupled wave; thin 
solid line is the scaled wave. 
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Fig.2 Wave data in the region marked by two arrows are 
moved to the data drop-out region and is shown as 
dotted line. 

 
 

 

 

 

 

 

 

 

 

Fig.3 The shifted data string is scaled back as the dotted 
line.  

 

 

 

 

 

 

 

 

 

 

Fig.4 The original data and two decoupled waves. At the 
data drop-out point, the original data takes a zero 
value. The wave decoupled by 90σ = is shown in 
heavy line around the middle region of the original 
data, the wave decoupled by 30σ = is at the 
bottom region. 

 

 

 

 

 

 

 

 

 

 

 

Fig.5 The wave components decoupled by 10,5σ = . 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.6 The wave component decoupled by 3σ = . 
 

 

 

 

 

 

 

 

 

 

Fig.7 The wave component decoupled by 1σ =  
 
 
 

 

 

 

 

 

 

 

 

 

 

Fig.8 Four decoupled waves: long waves generated by 
0.4,0.25,0.125σ = and bottom wave is the final 

high frequency part which is considered as the 
noise. 

 
 
 
 
 
 
 
 
 
 
Fig.8 Some part of the original and repaired data by just 

applying the filter with 0.075σ = . 
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Fig.9 The first cycle and second cycle repaired data 

coincide to each other. 
(10a) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(10b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 Fig.10 The original, first cycle and second cycle 

repaired data: (a) 1 day drop-out and (b) 2 days 
dropout.  
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Fig.11 Spectrum of the decoupled wave components: 9a 

through 9h. 
 
 
 
 
 
 
 
 
 
 


