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ABSTRACT

The iterative filter based on the iterative moving Gaussian smoothing method is employed to
decompose wave from a data string with discontinuity. Around a discontinuous jump, the resulting smoothed
data process the oscillatory Runge phenomenon whose wavelengths are in the same order of the smoothing
factor o of the Gaussian smoothing factor. On the other hand, the amplitude is only proportional to the
magnitude of jump. For the discontinuity of derivatives, the induced oscillation is not significant. Similar
result can be obtained for the iterative cubic moving least squares method which consists with the uniqueness
theorem of the iterative filter. The limited filtering range method is employed to eliminate the Runge
phenomenon. Numerical tests show that the proposed can effectively capture the original smoothed wave.
Keywords: iterative moving least squares method, discontinuous jump, limited filtering range.

INTRODUCTION

Because of the rapid development of computer hardware and
software, especially after the nano-technology becomes a
practical engineering work, how to automatically handle a
tremendous amount of data within a reasonable short time
period becomes more and more important. Today, people
heavily reply on human inspection to remove failed data string
and obtain available data for analysis. How to develop
fundamental tools of the automatic inspection is a key
technology to overcome the burry of human inspection. To the
authors’ opinion, a reliable wave decomposition technology
which gives complete information of wave amplitude,
frequency and phase velocity everywhere will give all
necessary information for automatic inspection. For example,
around data failure point, strange behavior will be reflected by
a rapid variation of amplitude, frequency and/or phase.

So far there are several successful methods of wave
decomposition: Fourier series expansion [1]; matrix pencil
method [2,3]; and the empirical mode decomposition of Huang
et. al. [4,5]. The result of the first method generally gives fixed
spectrum over the expansion range. The second method is a
zero-th order approximation. The last method is contaminated
by the numerical modification of cubic spline interpolation. In
other words, these method are not robust enough to take care of
the data failure region.

In a paper presented in this conference [6], an iterative
procedure to decompose different wave form from a data string
composed of several waves via the moving least squares
method is proposed. An new strategy is also proposed that one
can employ a low order least squares smoothing method to
achieve the performance of a high order method provided that
the closest frequencies of two waveforms around the cut-off
point are separable. Moreover, if these two frequencies close to
each other, the required iteration steps increases exponentially.
Although the limitation of lengthy iteration might restrict the
application of this method, it is possible to replace the basic
smoothing method (such as the diffusive Gaussian smoothing
method) by a less diffusive smoothing method that their finally
results are the same. Therefore, it is valuable to study the
properties of the filtered result such as the behavior across a
discontinuity and how to improve any possible undesirable
phenomenon. In this study, the Runge phenomenon of the final
result across a discontinuity and a remedy strategy will be
studied. The discontinuity of a data string frequently relates to
data failure or a deterioration of data quality.

THEORETICAL ANALYSIS

Previous Works

Consider a set of data (x,y;),i=01..,n to be
approximated by a polynomial. The error targeting function of
the weighted moving least squares method is defined at every
data point x, as [6-8]
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The least squares method requires that I, is minimum with
respect 1o Ay Ay Ank Thus, the following
simultaneous algebraic equations are to be solved:
ol _ OI/ _ ol _
=0, K =0, .., ¥ =0, 2
0h oA, 0A @

The solution of these equation yields the least-squares weighted
value, ¥, =Ay,,at x=x [2-4]. If the polynomial contains
only the zero degree term, the method becomes the well-known
Gaussian smoothing method [9-11].

Assume that a data string y defined on uniform spacing
X, = kAX , it is expanded in form of

J
Y=Yy, 3)
j=0

where y;(A;) ’s are wave components consist of sine or cosine
functions. After employing the Gaussian smoothing method,
the resulting data string can be written in the following form:

J
Vi =S(y) = 5(2 y,—(A,-)J =
j=0

: @)
J J
D S(yj(4) = X a(@l,0)y;(4))
i= j=0
where  S(y) denotes the linear smoothing operator,

a(o/A;,0)is the attenuation factor  reflecting the effect of S
upon the j -th wave, and 0 denotes M =0. In Ref.[6], the
following theorems state the property of a(g/A;,M).
Theorem 1

The result of applying the Gaussian smoothing method to
a data string described by Eq.(3) has the following dissipative
property:

O<a(g/A;,M)<1. (5)

Theorem 2

By applying the moving least squares method with
M =12,.. in Eq.(1) to a data string y, the dissipative
property of Eq.(5) is also satisfied.

It can be shown that, for the Gaussian smoothing
method, the resulting explicit formula for the data y is
[9-11]

(o] (o]

L 2 w2
W= Y EXP[‘(XJZ—);I()]Yj . exp[—%]

j=—0o o j==—00
(6)
In Ref.[6], an iterative procedure was derived as follows.
1. Select a smoothing filter having the following property
L-a(o/2;,m)|<1. @
2. If one uses the Gaussian smoothing technique, use equation
(9) to estimate the critical values of o and m .

Perform m -th number of iterations as described in (3) and
(4) using the critical o and then go to (6). On the other
hand, for smoothing filters in which the values of m and
o can not be identified, one may use trials and errors to
selecta o such that steps 2 and 4 can converge.

3. Employ the filter to the original data string to separate both
the smoothed and residual waveforms.

4. Apply the same smoothing method to the resulting residual
waveform to yet obtain another smoothed and residual
waveforms.

5. Repeat (3) and (4) until the increment smoothed waveform is
negligible.

6. The desired high frequency waveform is the final
residual waveform and the low frequency waveform
is the difference of the high frequency waveform
and the original data.

Subsequently, the resulting smoothed data y is

J
y(m) = z{l—[l—a(a//\,-,M)]m}yj(/\,-)
;T ®)
:Zb(a//\j,m)yj(Aj)
=0

If the original data are composed of smooth waves and the
represented wavelength around the cut-off point in the
frequency domain are A, and A, , respectively, the
necessary factor o and iteration step m for the Gaussian
smoothing and the linear moving least squares methods can be
solved from the following equation

2
b(a/Ay,m) =1-[1-exp{- 2’;220 H" =b
cl 9)
2m0? (
b(a /A, m) =1-[1=exp{- g2 " =b,

c2

provided that parameters b, and b, are given as 0.001
and 0.999, respectively. For the quadratic and cubic
moving least squares methods, a similar set of equation
can be derived too [6].

Using the iterative scheme and above mentioned theorems,
the following theorems are also derived in Ref.[6].

Theorem 3 (Uniqueness Theorem)

If the lower and upper limits of the transition zone, b,
and b, , are identical and the data string contain two adjacent
waveforms having a difference in wavelength larger than two
limits of the transition zone , the resulting low and high
frequency parts can be uniquely defined provided that the
filters employed have the property of Eq.(5).

Corollary 3.1
If a filter has the non-negative property
Osa(a,/lj,M)<oo, (10),

an iterative filter can be constructed to decompose two
waveforms by applying under-relaxation factors to all the
smoothed waveforms.
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V=wy, + V., + wy, +... + \2
y. a{)ﬁi ay, + @y, RYn , (1)
y=y-y

0<w, ..., @ <1, (12)
provided that the waveforms of the data string are separable.
Limited Filtering Range Method

If a data string involves a discontinuity, a Fourier
series approximation across there always introduces the Gibbs
phenomenon, say spurious oscillation. If the approximation is
restricted to continuous region, the oscillation can be
essentially avoid which is similar to that monotonic
interpolation scheme of Ref.[11]. A convenient method to
identify boundaries of these piecewise continuous segments are
the location where the first cycle’s high frequency part change
sign and magnitudes at two sides are significant. For example,
in Fig.1 the original data has a jump at x = 0.5, the first cycle’s
high frequency part of Gaussian smoothing method satisfies the
following properties.

Y1 (%) % Y1 (Xis) <O
. . (13)
|y1(xi—p) yl(xi+1+q) >K

local max

)
local max

where K > a"yi"z, a is an user specified parameter, and yi
is the high frequency residual part of the first cycle. In many
practical problems, the index number pand q are greater
than unity. Moreover, small oscillations also exist across a
discontinuity of derivatives dy/dx,d?y/dx?, and high order
derivatives, respectively. Therefore, it seems reasonable to put
a segment boundary point at

>K (14)

|y1 local max
Although such a discriminator will embed a small segment
between local maximum and minimum points of Eq.(14) which
results in a slightly smeared jump resolution, it is rather simple
and easy to implement. Since within the segment there is only a
few points that may introduce oscillatory result, it is
recommended to enlarge the segment boundaries at two ends.
For a practical implementation, the high frequency
residual part of the first cycle, y, should be smoothed by the
Gaussian smoothing method with a proper value of smoothing
factor o . As shown in Fig.1, the original data involves a
discontinuous jump at x=5and random noise with a large
variation so that the resulting y, has a large local variation.
After smoothing with ¢ =0.1, the resulting data has four local
maximum points around x=5. Among these local maximum
points, two points are not the desired points and can be
excluded by adding the following constraint, say

|yi _Yi-1|>€zj:|yj' _yj—1| (15)

where n+1 is total point number and B > 3. After applying
the restriction of Egs.(14) and (15) to the smoothed high

frequency residual part, shown as the heavy solid line in the
figure, the interior segment boundaries are chosen at x =4.96
and 5.06. Although this restriction gives a relatively wide
transition zone from y =0 to y =1, the proposed strategy is
a robust for many tests.

RESULTS AND DISCUSSIONS

The first test case is the unit step function

y=u(b) =0, x<5

16
=1, x=5 (16)

The case is different from those discussed in Ref.[6] which are
all of smoothed waves. Now the optimal factor o and
iteration step m do not have any meaning. There is a limit for
the smoothed part as the iteration step m increases
indefinitely. Figures 2 and 3 show the resulting smoothed value
by using the iterative Gaussian smoothing method with
o =0.25 and 0.5, respectively. There exist oscillations (often
termed as the Runge phenomenon) across the jump in both
figure. Their oscillation amplitude are slowly die out within a
distance away from the jump and their magnitudes of amplitude
are about the same (both first peaks are at 1.1 for x >5). Their
first oscillatory wave lengths are 0.35 and 0.71 for o =0.25
and 0.5, respectively. In other words the wavelength of the
oscillatory wave length is about x/E times the smoothing
factor o . If the jump is reduced to be 0.1, the result is shown in
Fig.4. The wavelength changes slightly and the ratio between
amplitude to jump is the same as that of Figs.2 and 3. In other
words, the Runge phenomenon always exists. Figure 5 shows
the result of employing the iterative moving least squares
method, except that the iteration number is different, the final
result is the same as that of Fig.3 that consists with the
uniqueness theorem.

Next, the random number is added to the original wave
so that

y =0.1*(r -0.5), X<5

(17)
=1+0.1%*(r-05), x=5

where r is the random number generated by the RANDOM
subroutine of the Microsoft F-77 software. After applying the
iterative Gaussian smoothing method, results are shown in
Figs.6 and 7 for o =0.25and 0.5, respectively. A careful
comparison between these figures to Figs.2 and 3, respectively,
reveals that the Runge phenomenon is not affected by the
imposed random noise. Around the jumping point, the
corresponding amplitude and wavelength distributions of each
iteration shown in figure are nearly the same with each other.
This result confirms the fact that the wave with length shorter
than 1.6 o will be removed.

For a continuous data string with slope discontinuity, the
smoothed part generated by the proposed iterative scheme
generate a much more smaller Runge phenomenon than that
discussed above. The original data in Fig.8 has a first order
discontinuity is found at x =0.3,0.5, and 0.7. The convergent
smoothed part generated by the present iterative Gaussian
smoothing method with ¢ =0.05 has small error around the
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slope discontinuous point as comparing with that of Figs.2 Antennas and Propagation, vol.37, no.2, Feb. 1989,

through 7. For a factor of o =0.02, both the amplitude and
wavelength of the deviation from original data are less than that
with ¢ =0.05 as shown in Fig.9. For the discontinuity of the
second order derivative, the error is smaller than that shown in
Figs.8 and 9 and is not shown here. Generally, a practical data
string is frequently contaminated by noise or short waves. So
far it is nearly impossible to correctly capture the Runge
phenomenon due to jumps of the first and high order
derivatives. It is thus recommended to employ a factor o as
small as possible to ensure that the noise is eliminated and high
frequency waves are captured.

The above discussions reflect a fact that, the convergent
smooth part of the proposed smoothing method for a data string
with a discontinuous jump will produce the undesirable Runge
phenomenon and should be removed.

Figure 10 is the result of employing the iterative Gaussian
smoothing method with o =0.05 for 2 cycle (estimated by
EQ.(9)). Since the random number added to the original data is
only but a pseudo-random, in addition to the main wavelength
of A=2Ax it has an additional characteristic wave
with A =0.08, ifo <0.04 will reserve it to the smoothed
part. It is clear that the present limited range method works
very well.

Figure 11 shows a test case of block function added by
random number. Since the employed factor o =0.5 is much
larger than the wave length of the random number, only one
cycle of the Gaussian smoothing method together with the
limiting range strategy gives a satisfactory result. That shown
in Fig.12 employs two waves plus the random number as

y =0.2[sin 7% +sin 27x] +0.07 *(r —0.5) (18)

where r is the random number in the range of
0 <r<1lgenerated by the RANDOM subroutine. Since the
smooth composed wave has an effective wavelength of
A=0.8 and the random number has an wavelength of
A =0.08, EQ.(9) gives parameters o =0.05and m=1.
Again, the result of applying the limited range strategy and
iterative Gaussian smoothing method gives a satisfactory
filtered smoothed wave. A careful inspection of Figs.10
through 12 shows that the proposed method effectively
eliminates the Runge phenomenon across the discontinuity.

CONCLUSIONS
The iterative moving least squares method is employed to
study the properties of the oscillatory Runge phenomenon
around a discontinuous jump. A strategy of limited filtering
range is successively proposed to eliminate the oscillation.
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dotted line : original data
long dashed line : Gaussian smoothing with 0 = 0.2
solid line : high frequency redisual part

heavy solid : smoothing the residue with 0= 0.1

local max. at x = 4.96 and 5.06

Fig.1 The high and low frequency parts of employing the
Gaussian smoothing method one cycle across a jump
with g =0.2, the heavy solid line is the smoothed high
frequency residue with o =0.1.
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0=0.25

2 thin solid : original data
long dashed : 1st cycle
dashed : 5th cycle
dotted :100th cycle

heavy solid :10000th cycle

05

n n n n 1 n n n n 1 n n n n ]
2 4 6 8

Fig.2 The results of employing the iterative Gaussian
smoothing method with o =0.25: thin solid line is the
original data; long dashed line is the first cycle result;
dashed line is the 5" cycle result; dotted line is the 100"
cycle result; and heavy solid line is the 10000™ cycle

result.
0=0.5
2r thinsolid  : original data
B long dashed : 1st cycle
I dashed : 5th cycle
I dotted :100th cycle
15 [ heavy solid :10000th cycle
1
- |
05
0
N R N S R
4

Fig.3 The results of employing the iterative Gaussian
smoothing method with ¢ =0.5: thin solid line is the
original data; long dashed line is the 1st cycle result;
dashed line is the 5™ cycle result; dotted line is the 100"
cycle result; and heavy solid line is the 10000™ cycle

result.
0.02 iterative Gaussian smoothing
0=0.5
thin solid : original data
long dashed : 1st cycle
dashed : 5th cycle
0.015 dotted :100th cycle

heavy solid :10000th cycle

0.01

0.005

Fig.4 The results of employing the iterative Gaussian
smoothing method with ¢ =0.5, the jump is reduced to
be 0.1: thin solid line is the original data; long dashed line
is the first cycle result; dashed line is the 5t cycle result;
dotted line is the 100" cycle result; and heavy solid line is
the 10000™ cycle result.
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2 iterative cubic moving least squares
0=0.5
thin solid : original data
long dashed : 1st cycle
dashed : 5th cycle
15 dotted : 50th cycle

heavy solid :1000th cycle

0.5

Fig.5 The results of employing the iterative cubic moving least
squares method with o =0.5: thin solid line is the
original data; long dashed line is the first cycle result;
dashed line is the 5™ cycle result; dotted line is the 100"
cycle result; and heavy solid line is the 10000" cycle
result.

0=0.25
thin solid : original data
+0.1*(random number-0.5)
long dashed : 1st cycle

dashed : 5th cycle

dotted :100th cycle

15 heavy solid : 10000th cycle

0.5

Fig.6 The results of employing the iterative Gaussian
smoothing method with ¢ =0.25: the zigzag thin solid
line is the original data; long dashed line is the first cycle
result; dashed line is the 5% cycle result; dotted line is the
100" cycle result; and heavy solid line is the 20000 cycle
result.

0=05
r thin solid

: original data
+ 0.1*(random number-0.5)
long dashed : 1st cycle
dashed : 5th cycle
dotted :100th cycle
heavy solid :10000th cycle

15

Fig.7 The results of employing the iterative Gaussian
smoothing method with o =0.5: the zigzag thin solid
line is the original data; long dashed line is the first cycle
result; dashed line is the 5% cycle result; dotted line is the
100" cycle result; and heavy solid line is the 20000 cycle
result.
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15 . . thin line : original data
thin : orignal 15 dashed line : 1st cycle result, 6=0.5, 0 _=0.1
LaE solid: convergent sol, 0= 0.05 E e

13F heavy solid: error

Fig.8 Result of slope discontinuity: thin solid line is the original
data; upper solid line is the convergent smoothed part
with o =0.05; and lower solid line is the error of the
smoothed part.

thin : orignal
solid: convergent sol, 0 = 0.02
heavy solid: error

! 1
0.5 1
X

Fig.9 Result of slope discontinuity: thin solid line is the original
data; upper solid line is the convergent smoothed part
with o =0.02 ; and lower solid line is the error of the
smoothed part.

N

5[ Iterative Gaussian smoothlng

| for segment boundary ¢ =0.2,0,,=0.1

2[-thin solid : original data
[ dashed :1stcycleresult o =0.1
heavy solid : 2nd cycle result

ﬁ

> T

im m

Fig.10 Result of employing the limited range method and
iterative Gaussian smoothing method: zigzag line is the
original data, dashed line is the first cycle result and
heavy solid line is that of 2nd cycle, witho =0.2 and
O, = 0.1to judge segment boundaries and . o = 0.1 for
main iteration.

x

Fig.11 Result of employing the limited range method and
iterative Gaussian smoothing method: zigzag line is the
original data, the heavy line is the first cycle result, with
0=02 and o0, =0.1.

2r- datay
r 0=0.2
Ores =0.1
L solid line : original data
15k dotted : 1 cycle result, 0 = 0.05

o

f Aﬂﬁ
W

Fig.12 The result of recovering smoothed data with
discontinuous jump by filtering out the random
number whose effective wavelength is about
Aeiecr= O = 0.02 : the original data is shown as thin
solid line; 1% cycle result is shown as heavy solid
line; the 10™ cycle result is shown as dotted line;
0=02, g, =0.1.
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