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ABSTRACT 
     The iterative filter based on the iterative moving Gaussian smoothing method is employed to 
decompose wave from a data string with discontinuity. Around a discontinuous jump, the resulting smoothed 
data process the oscillatory Runge phenomenon whose wavelengths are in the same order of the smoothing 
factorσ of the Gaussian smoothing factor. On the other hand, the amplitude is only proportional to the 
magnitude of jump. For the discontinuity of derivatives, the induced oscillation is not significant. Similar 
result can be obtained for the iterative cubic moving least squares method which consists with the uniqueness 
theorem of the iterative filter. The limited filtering range method is employed to eliminate the Runge 
phenomenon. Numerical tests show that the proposed can effectively capture the original smoothed wave. 
Keywords: iterative moving least squares method, discontinuous jump, limited filtering range. 
 
INTRODUCTION 
  Because of the rapid development of computer hardware and 
software, especially after the nano-technology becomes a 
practical engineering work, how to automatically handle a 
tremendous amount of data within a reasonable short time 
period becomes more and more important. Today, people 
heavily reply on human inspection to remove failed data string 
and obtain available data for analysis. How to develop 
fundamental tools of the automatic inspection is a key 
technology to overcome the burry of human inspection. To the 
authors’ opinion, a reliable wave decomposition technology 
which gives complete information of wave amplitude, 
frequency and phase velocity everywhere will give all 
necessary information for automatic inspection. For example, 
around data failure point, strange behavior will be reflected by 
a rapid variation of amplitude, frequency and/or phase.  
 

 So far there are several successful methods of wave 
decomposition: Fourier series expansion [1]; matrix pencil 
method [2,3]; and the empirical mode decomposition of Huang 
et. al. [4,5]. The result of the first method generally gives fixed 
spectrum over the expansion range. The second method is a 
zero-th order approximation. The last method is contaminated 
by the numerical modification of cubic spline interpolation. In 
other words, these method are not robust enough to take care of 
the data failure region. 
 

In a paper presented in this conference [6], an iterative 
procedure to decompose different wave form from a data string 
composed of several waves via the moving least squares 
method is proposed. An new strategy is also proposed that one 
can employ a low order least squares smoothing method to 
achieve the performance of a high order method provided that 
the closest frequencies of two waveforms around the cut-off 
point are separable. Moreover, if these two frequencies close to 
each other, the required iteration steps increases exponentially. 
Although the limitation of lengthy iteration might restrict the 
application of this method, it is possible to replace the basic 
smoothing method (such as the diffusive Gaussian smoothing 
method) by a less diffusive smoothing method that their finally 
results are the same. Therefore, it is valuable to study the 
properties of the filtered result such as the behavior across a 
discontinuity and how to improve any possible undesirable 
phenomenon. In this study, the Runge phenomenon of the final 
result across a discontinuity and a remedy strategy will be 
studied. The discontinuity of a data string frequently relates to 
data failure or a deterioration of data quality. 

THEORETICAL ANALYSIS 
Previous Works 

Consider a set of data niyx ii ,...,1,0),,( =  to be 
approximated by a polynomial. The error targeting function of 
the weighted moving least squares method is defined at every 
data point kx  as [6-8] 
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The least squares method requires that kI  is minimum with 
respect to kmkk AAA ,,1,0 ,...,, .  Thus, the following 
simultaneous algebraic equations are to be solved: 
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The solution of these equation yields the least-squares weighted 
value, kk Ay ,0= , at kxx =  [2-4]. If the polynomial contains 
only the zero degree term, the method becomes the well-known 
Gaussian smoothing method [9-11].  

Assume that a data string y defined on uniform spacing 
xkxk ∆= , it is expanded in form of 
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where )( jjy λ ’s are wave components consist of sine or cosine 
functions. After employing the Gaussian smoothing method, 
the resulting data string can be written in the following form: 
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where )(yS denotes the linear smoothing operator, 
)0,/( ja λσ is the attenuation factor  reflecting the effect of S  

upon the j -th wave, and 0 denotes 0=M . In Ref.[6], the 
following theorems state the property of ),/( Ma jλσ . 
Theorem 1 
     The result of applying the Gaussian smoothing method to 
a data string described by Eq.(3) has the following dissipative 
property: 

1),/(0 ≤≤ Ma jλσ .                        (5) 

Theorem 2 
     By applying the moving least squares method with 

,...2,1=M  in Eq.(1) to a data string y , the dissipative 
property of Eq.(5) is also satisfied. 
 
   It can be shown that, for the Gaussian smoothing 
method, the resulting explicit formula for the data y  is 
[9-11] 

2 2( ) ( )
exp[ ] exp[ ]2 22 2

x x x xj k j ky yk j
j jσ σ

∞ ∞− −
= − ÷ −

=−∞ =−∞
∑ ∑                                  

(6) 
In Ref.[6], an iterative procedure was derived as follows. 
1. Select a smoothing filter having the following property 
    1),/(1 ≤− Ma jλσ .                           (7) 
2. If one uses the Gaussian smoothing technique, use equation 

(9) to estimate the critical values of σ  and m .  

Perform m -th number of iterations as described in (3) and 
(4) using the critical σ  and then go to (6).  On the other 
hand, for smoothing filters in which the values of m  and 
σ  can not be identified, one may use trials and errors to 
select a σ  such that steps 2 and 4 can converge. 

3. Employ the filter to the original data string to separate both 
the smoothed and residual waveforms. 

4. Apply the same smoothing method to the resulting residual 
waveform to yet obtain another smoothed and residual 
waveforms. 

5. Repeat (3) and (4) until the increment smoothed waveform is 
negligible. 

6. The desired high frequency waveform is the final 
residual waveform and the low frequency waveform 
is the difference of the high frequency waveform 
and the original data. 

Subsequently, the resulting smoothed data y  is  
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If the original data are composed of smooth waves and the 
represented wavelength around the cut-off point in the 
frequency domain are 1cλ  and 2cλ , respectively, the 
necessary factor σ  and iteration step m  for the Gaussian 
smoothing and the linear moving least squares methods can be 
solved from the following equation 
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provided that parameters 1b  and 2b  are given as 0.001 
and 0.999, respectively. For the quadratic and cubic 
moving least squares methods, a similar set of equation 
can be derived too [6]. 
    Using the iterative scheme and above mentioned theorems, 
the following theorems are also derived in Ref.[6]. 

Theorem 3 (Uniqueness Theorem) 
   If the lower and upper limits of the transition zone, 1b  
and 2b , are identical and the  data string contain two adjacent 
waveforms having a difference in wavelength larger than two 
limits of the transition zone , the resulting low and high 
frequency parts can be uniquely defined provided that the 
filters employed have the property of Eq.(5). 

Corollary 3.1 
     If a filter has the non-negative property 
   0 ( , , )ja Mσ λ≤ < ∞ ,                           (10), 

an iterative filter can be constructed to decompose two 
waveforms by applying  under-relaxation factors to all the 
smoothed waveforms. 
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provided that the waveforms of the data string are separable. 

Limited Filtering Range Method 
        If a data string involves a discontinuity, a Fourier 
series approximation across there always introduces the Gibbs 
phenomenon, say spurious oscillation. If the approximation is 
restricted to continuous region, the oscillation can be 
essentially avoid which is similar to that monotonic 
interpolation scheme of Ref.[11]. A convenient method to 
identify boundaries of these piecewise continuous segments are 
the location where the first cycle’s high frequency part change 
sign and magnitudes at two sides are significant. For example, 
in Fig.1 the original data has a jump at 5.0=x , the first cycle’s 
high frequency part of Gaussian smoothing method satisfies the 
following properties. 
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where 
2

'
1yK α≥ , α is an user specified parameter, and '

1y  

is the high frequency residual part of the first cycle. In many 

practical problems, the index number p and q are greater 

than unity. Moreover, small oscillations also exist across a 

discontinuity of derivatives dxdy / , 22 / dxyd , and high order 

derivatives, respectively. Therefore, it seems reasonable to put 

a segment boundary point at 

       Ky
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≥
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'
1                            (14) 

Although such a discriminator will embed a small segment 
between local maximum and minimum points of Eq.(14) which 
results in a slightly smeared jump resolution, it is rather simple 
and easy to implement. Since within the segment there is only a 
few points that may introduce oscillatory result, it is 
recommended to enlarge the segment boundaries at two ends. 
    For a practical implementation, the high frequency 
residual part of the first cycle, '

1y  should be smoothed by the 
Gaussian smoothing method with a proper value of smoothing 
factor σ . As shown in Fig.1, the original data involves a 
discontinuous jump at 5=x and random noise with a large 
variation so that the resulting '

1y  has a large local variation. 
After smoothing with 1.0=σ , the resulting data has four local 
maximum points around 5=x . Among these local maximum 
points, two points are not the desired points and can be 
excluded by adding the following constraint, say 

    ∑ −− −>−
j

jjii yy
n

yy 11
β                     (15) 

where 1+n  is total point number and 3>β . After applying 
the restriction of Eqs.(14) and (15) to the smoothed high 

frequency residual part, shown as the heavy solid line in the 
figure, the interior segment boundaries are chosen at 96.4=x  
and 5.06. Although this restriction gives a relatively wide 
transition zone from 0≈y  to 1≈y , the proposed strategy is 
a robust for many tests. 

RESULTS AND DISCUSSIONS 
     The first test case is the unit step function 

(5) 0, 5
1, 5

y u x
x

= = <
= ≥

                          (16) 

The case is different from those discussed in Ref.[6] which are 
all of smoothed waves. Now the optimal factor σ  and 
iteration step m  do not have any meaning. There is a limit for 
the smoothed part as the iteration step m  increases 
indefinitely. Figures 2 and 3 show the resulting smoothed value 
by using the iterative Gaussian smoothing method with 

25.0=σ  and 0.5, respectively. There exist oscillations (often 
termed as the Runge phenomenon) across the jump in both 
figure. Their oscillation amplitude are slowly die out within a 
distance away from the jump and their magnitudes of amplitude 
are about the same (both first peaks are at 1.1 for 5>x ). Their 
first oscillatory wave lengths are 0.35 and 0.71 for =σ 0.25 
and 0.5, respectively. In other words the wavelength of the 
oscillatory wave length is about 2 times the smoothing 
factor σ . If the jump is reduced to be 0.1, the result is shown in 
Fig.4. The wavelength changes slightly and the ratio between 
amplitude to jump is the same as that of Figs.2 and 3. In other 
words, the Runge phenomenon always exists. Figure 5 shows 
the result of employing the iterative moving least squares 
method, except that the iteration number is different, the final 
result is the same as that of Fig.3 that consists with the 
uniqueness theorem. 
     Next, the random number is added to the original wave 
so that 

5),5.0(*1.01
5),5.0(*1.0

≥−+=
<−=

xr
xry

                        (17) 

where r is the random number generated by the RANDOM 
subroutine of the Microsoft F-77 software. After applying the 
iterative Gaussian smoothing method, results are shown in 
Figs.6 and 7 for 25.0=σ and 0.5, respectively. A careful 
comparison between these figures to Figs.2 and 3, respectively, 
reveals that the Runge phenomenon is not affected by the 
imposed random noise. Around the jumping point, the 
corresponding amplitude and wavelength distributions of each 
iteration shown in figure are nearly the same with each other. 
This result confirms the fact that the wave with length shorter 
than 1.6σ will be removed. 
    For a continuous data string with slope discontinuity, the 
smoothed part generated by the proposed iterative scheme 
generate a much more smaller Runge phenomenon than that 
discussed above. The original data in Fig.8 has a first order 
discontinuity is found at ,5.0,3.0=x  and 0.7. The convergent 
smoothed part generated by the present iterative Gaussian 
smoothing method with 05.0=σ  has small error around the 
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slope discontinuous point as comparing with that of Figs.2 
through 7. For a factor of 02.0=σ , both the amplitude and 
wavelength of the deviation from original data are less than that 
with 05.0=σ  as shown in Fig.9. For the discontinuity of the 
second order derivative, the error is smaller than that shown in 
Figs.8 and 9 and is not shown here. Generally, a practical data 
string is frequently contaminated by noise or short waves. So 
far it is nearly impossible to correctly capture the Runge 
phenomenon due to jumps of the first and high order 
derivatives. It is thus recommended to employ a factor σ  as 
small as possible to ensure that the noise is eliminated and high 
frequency waves are captured. 
    The above discussions reflect a fact that, the convergent 
smooth part of the proposed smoothing method for a data string 
with a discontinuous jump will produce the undesirable Runge 
phenomenon and should be removed.  
    Figure 10 is the result of employing the iterative Gaussian 
smoothing method with 05.0=σ  for 2 cycle (estimated by 
Eq.(9)). Since the random number added to the original data is 
only but a pseudo-random, in addition to the main wavelength 
of x∆≈ 2λ it has an additional characteristic wave 
with 08.0=effλ , if 04.0<σ  will reserve it to the smoothed 
part. It is clear that the present limited range method works 
very well. 
    Figure 11 shows a test case of block function added by 
random number. Since the employed factor 5.0=σ  is much 
larger than the wave length of the random number, only one 
cycle of the Gaussian smoothing method together with the 
limiting range strategy gives a satisfactory result. That shown 
in Fig.12 employs two waves plus the random number as 
  )5.0(*07.0]2sin[sin2.0 −++= rxxy ππ  (18) 
where r  is the random number in the range of 

10 ≤≤ r generated by the RANDOM subroutine. Since the 
smooth composed wave has an effective  wavelength of 

8.0=λ and the random number has an wavelength of 
08.0=effλ , Eq.(9) gives parameters 05.0=σ and 1=m . 

Again, the result of applying the limited range strategy and 
iterative Gaussian smoothing method gives a satisfactory 
filtered smoothed wave.  A careful inspection of Figs.10 
through 12 shows that the proposed method effectively 
eliminates the Runge phenomenon across the discontinuity. 
 
CONCLUSIONS 
   The iterative moving least squares method is employed to 
study the properties of the oscillatory Runge phenomenon 
around a discontinuous jump. A strategy of limited filtering 
range is successively proposed to eliminate the oscillation. 
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Fig.1 The high and low frequency parts of employing the 

Gaussian smoothing method one cycle across a jump 
with 2.0=σ , the heavy solid line is the smoothed high 
frequency residue with 1.0=σ . 
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Fig.2 The results of employing the iterative Gaussian 

smoothing method with 25.0=σ : thin solid line is the 
original data; long dashed line is the first cycle result; 
dashed line is the 5th cycle result; dotted line is the 100th 
cycle result; and heavy solid line is the 10000th cycle 
result. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.3 The results of employing the iterative Gaussian 

smoothing method with 5.0=σ : thin solid line is the 
original data; long dashed line is the 1st cycle result; 
dashed line is the 5th cycle result; dotted line is the 100th 
cycle result; and heavy solid line is the 10000th cycle 
result. 

 
 
 
 
 
 
 
 
 
 
 
 
Fig.4 The results of employing the iterative Gaussian 

smoothing method with 5.0=σ , the jump is reduced to 
be 0.1: thin solid line is the original data; long dashed line 
is the first cycle result; dashed line is the 5th cycle result; 
dotted line is the 100th cycle result; and heavy solid line is 
the 10000th cycle result. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.5 The results of employing the iterative cubic moving least 

squares method with 5.0=σ : thin solid line is the 
original data; long dashed line is the first cycle result; 
dashed line is the 5th cycle result; dotted line is the 100th 
cycle result; and heavy solid line is the 10000th cycle 
result. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.6 The results of employing the iterative Gaussian 
smoothing method with 25.0=σ : the zigzag thin solid 
line is the original data; long dashed line is the first cycle 
result; dashed line is the 5th cycle result; dotted line is the 
100th cycle result; and heavy solid line is the 10000th cycle 
result. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig.7 The results of employing the iterative Gaussian 
smoothing method with 5.0=σ : the zigzag thin solid 
line is the original data; long dashed line is the first cycle 
result; dashed line is the 5th cycle result; dotted line is the 
100th cycle result; and heavy solid line is the 10000th cycle 
result. 
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Fig.8 Result of slope discontinuity: thin solid line is the original 

data; upper solid line is the convergent smoothed part 
with 05.0=σ ; and lower solid line is the error of the 
smoothed part. 

 
 
 
 
 
 
 
 
 
 
 
Fig.9 Result of slope discontinuity: thin solid line is the original 

data; upper solid line is the convergent smoothed part 
with 02.0=σ ; and lower solid line is the error of the 
smoothed part. 

 
 
 
 
 
 
 
 
 
 
 
Fig.10 Result of employing the limited range method and 

iterative Gaussian smoothing method: zigzag line is the 
original data, dashed line is the first cycle result and 
heavy solid line is that of 2nd cycle, with 2.0=σ  and 

1.0=resσ to judge segment boundaries and . 1.0=σ  for 
main iteration. 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
Fig.11 Result of employing the limited range method and 

iterative Gaussian smoothing method: zigzag line is the 
original data, the heavy line is the first cycle result, with 

2.0=σ  and 1.0=resσ . 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.12 The result of recovering smoothed data with 
discontinuous jump by filtering out the random 
number whose effective wavelength is about 

02.0=∆≈ xeffectλ : the original data is shown as thin 
solid line; 1st cycle result is shown as heavy solid 
line; the 10th cycle result is shown as dotted line; 

1.0,2.0 == resσσ . 
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摘摘摘摘            要要要要    
本文應用疊代式移動型最小平方誤差法之波拆解法研究據

有斷點的數據串，經平滑後的 RUNGE震盪現象。震盪波從
斷點位置起向兩邊衰減，第一個震盪波的波長只與高斯函數

之平滑參數σ 成正比率，但震幅則只與斷點的高低大小有
關。斜率及高次導函數的不連續性所產生的震盪誤差不大且

其震幅和波長都和平滑參數σ 成比率，因此若使用合理小
的σ ，可以不需特意處理這類的斷點誤差。本文提出一種
簡易的數據串分段濾波法，對各斷分別做平滑，數值證明此

種簡易法可以消除震盪性誤差。 

關鍵詞關鍵詞關鍵詞關鍵詞：：：：疊代式波拆解法，斷點，RUNGE震盪現象，數
據串分段濾波法。 


