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ABSTRACT
A simple and fast strategy is proposed to evaluate the frequency spectrum of a string of data whose total

number may not be of 2" and the time intervals between successive data may be non-uniform. The cubic
moving least squares method is first employed to separate both the non-sinusoidal and random parts. Next,

the Hyunk M3A cubic monotonic interpolation is modified and is employed to convert the remaining data

into a data string with uniform time intervals and the total data number isexactly 2™. Findly, asimple FFT
agorithm is employed to provide the spectrum with negligible low frequency error.

K eywor ds: Cubic Movi ng Least Squares, FFT, Proper Number of Data, Periodic Condition .

INTRODUCTION

Because of the rapid development of computer
hardware and software, the application of a
computational fluid dynamical program to unsteady
problem becomes a practical issue. During the post
processing step, to inspect the frequency spectrum at
some typical pointsis aconvenient tool to look into the
physical of the flow field. Most computational programs
have characters of changing time step size to get merits
of both computational stability and computing efficiency.
As a consequence, aresult of an unsteady CFD program
may involve non-uniform time step and have variable
step size where number of data points is not exactly
egual to some power of 2 or the products of some powers
of integers. Consequently, how to employ a fast Fourier
transform algorithm to evaluate the frequency may

become a difficult issue.
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During the developing period of the fast Fourier
transform, most people thought that an analogical data
string may be exact. On the other hand, the fast Fourier
transform is a digital version which can only capture
finite number of data. Consequently, most commercial or
available fast Fourier transform algorithms have been
embedded with the following functions to suppress the
aliasing error [1]: side-lobe leakage suppression, adding
zeros for circular correlation, and zoom transform etc..
Most of these modifications become trivial, for a result
of a computational fluid dynamical or other program,
because the output data is principally located at finite
points. In other words, it seems that the original FFT
algorithm without any modification is more suitable for
the post processing than an available FFT program in a
commercial software package.

To the author's knowledge, the practical problems
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of obtaining the frequency spectrum from aresult of the
computational fluid dynamical program are: (1) how to
reasonably removing the numerical error (does the
classical statistical methods work?); (2) how to face the
problem of non-uniform time steps; and (3) how to treat
the problem of data number 1 2" ? In this study, a
simple strategy is proposed to solve the last two
problems.
ANALYSS
Cubic Moving Least Squares Method

Consider aset of data, say (x,¥),i =0,n.A

moving cubic least squares method defines the error

measure function at apoint X _ in form of [2]

n

L=a e ") [y - f(x- %)
i=0

, ®
f (%) :a ayx’

where e 8" %)°/®*) j5 3 Gaussian kernel function with a

smoothing factor s . Following the classical least

squares method, the minimizing of 1, with respect to
parameters a, resulting a set of linear simultaneous
agebraic equations. If the polynomial of f, (x) tekesa
constant value, the method becomes a Gaussian
smoothing method. If the smoothing factor S is a
constant, like the Gaussian smoothing, the FFT algorithm
can be employed for the present approach. The required
computing count for multiplication and division is
4(n+2)In(n+1) plus the operating count to evaluate a
set of 4 linear equations.

The numerical result of a computational fluid
dynamical program often involves non-sinusoidal part,
pseudo-sinusoidal and random parts. It is recommended
to employ the moving cubic least squares method to
isolate the non-sinusoidal and the random parts, with
large enough and small enough smoothing factorssS ,
respectively.

Monotonic Cubic Interpolation Method

Consider a Hermite cubic interpolation between
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points (X,X,,)
Y(X) =6, (% %) +C,(x- %)% +C,(X- X) +G,

Cozyi’clzyi.’ 3+1/2=ﬁ (2
c. = 35|+1/2 - 2yil - yil+1 - y{ + y;+1 - 23+1/2
2 )g+1- Xi ()g+1_ )ﬂ)z

The sufficient monotonic condition of this cubic interpo-
lationisthat [3,4]

Y5l 1YialE38, Yy, 30 (©)
Once the monotonic condition is violated, Fritsch and
Carlson [3] proposed to reset y', anew value satisfying
Eq.(2). In 1992, Hyunk [5] developed several ENO type
monotonic cubic interpolants. In this study, his M3A
interpolation is employed that gives limiter to the slopes

Yi Y 8

, . : 3
Y, =son()min(Z| By (%) + sz (Opmax(3fs .2t Pl
Piao( ) =S 0 +0 100X - %),
Praaro® ) = Suso + g (X - %)
t; =minmod[ 0. 1/,(X), Pz % )]
d..,, = minmod(d,d,,), d =32 3z

417 X1

4)

§ =minmod[s ., ,,8 /2]

At two ends, the Hyunk boundary condition will ke
employed [5]. As will be discussed later, this cubic
interpolation might introduce too much artificial modify-
cation.

To the authors’ knowledge, the magnitude of spurious
oscillation of the cubic spline nterpolation is roughly
proportional to theratio of |y;/S+1/2] and | Yir1/S4+1/2]-
For a abrupt discontinuous jump next to a straight line,
these ratios might becomes very large. Otherwise, these
ratios may be of finite value. Therefore, the desired
switching function between the cubic spline interpolation

and monotonic cubic interpolation is chosen to be

|y‘i |! |yli+1|£k$+1/2'
k34

"xy'.. 30
y|xy|+1 (5)

Simultaneously, in Eq.(4), the slope of monotonic cubic

interpolation is modified to
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y, =sgn(t )min[%l Br-12(X) + Pragyo(x)pmax(k|s| ,§|:|>1 (6)

In order to reduce error in the limiting case, the cubic

interpolation is further degenerated to be a linear

equation whenever three successive points are almost
collinear, say

Y Yy =0, if

or

Y- 2Y +Y.o| £e
Yiso - 23/i+1+yi|£e

where € is an user specified tolerance. This monotonic

(7

interpolation method requires an operation count of
multiplication and division in the order of k> +
(L+3)xm, where N is number of old data points,

k»30, M is number of new data points, and L is
the count of a searching procedure to allocate an x1 (
X
Fast Fourier Transform

old old

' Xi+1 '

For the sake of simplicity and to employing the data
structure of a computer, it seems convenient to employ
the simple fast Fourier transform whose data points are
exactly equal to 2"(=n+1) [6]. For a set of data, the

Fourier transform pair is

5 f .
y=24+14 @-ib)er =4 a evm
=¥

2 2 -
1T0 (=¥ ®)
a,=— QY (X)e ' *dx
00

where (0,T,) isthe datarange, f, =1 /T,is the funda-
mental frequency. For convenience, in this study, the
resulting amplitudes are expressed in terms of their
absolute values. From the integration by part formula, it
is easy to prove that

2 T

3 =2y )+ YOI+ & (9P )0

bﬁ:_

[y"(To) - ¥y*(0)] 9)

T, ) 217
2'M[y(ﬂ,) y(0)] +

(2 0y’

- (52)3 g‘)y"'(x)cos(Zp £f x)dx

If there are jumps at two ends, the low frequency error

will be introduced. In other words, it is would be better

to choose data points at two ends with periodic v,y',
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and y"’'s. Since it is not easy to satisfy all of these

conditions, it is helpful to choose data at two ends with
zero yand y' and y" being amost periodic. Eq.(9)
also shows the fact that a shorter data range gives a
smaller low frequency error due to jump at two ends and
other artificial modification upon the original data.
Results and Discussions

Consider the original data (shown as thin red line in
Fig.1), which is the pressure history around a turbine
blade evaluated by a computational fluid dynamics code.
The black dotted line is the result smeared by the cubic
moving least squares method with s =0.05. A careful
inspection upon the difference between the red and black
dotted lines (shown as thin blue solid line around the
y =0 axis) reveals that the short wave part removed by
the moving least squares method is not a well organized
composite wave formed from complete sinusoidal waves
and noise. In other words, it may involve numerical error
and only part of true physics of the flow field for which
further studies are necessary. The heavy blue solid line
can be considered as the non-sinusoidal part that is
obtained by using s =0.4 to smear the black dotted
line. The purple solid line is the difference between the
black dotted line and heavy blue line. From this example
it seems that the cubic moving least squares method is a
convenient tool to decouple the random and
non-sinusoidal parts from the original data.

For the sake of completeness, a sine wave with
wave length | =0.5 (every wave length is resolved by
50 points) is smeared by the Gaussian smoothing (error
isshown asthinred linein Fig.2) and cubic moving least
squares (as heavy green line) methods, respectively.
Those shown in Fig.2 are the maximum error (reduction
of the local maximum of the sine wave) generated by
two different smoothing methods. It is obvious that, for
the Gaussian smoothing, the flatten effect become
insignificantly small only if s <0.029 . On the other
hand, for the cubic moving least squares method, the
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flatten effect at the local maximum point is small if
s <0.1 . Obviously, the cubic moving least squares has
a much better curvature resolving capability than that of
the Gaussian smoothing. If a still large smoothing factor
S is employed, the sine wave may be flatten to be a
straight line. Fig.3 shows the remaining peak value
(designed as residue) of both smoothing methods. Their
residues are negligiblewhen s >0.5| for the Gaussian
smoothing method and s >0.61 for the cubic moving
least squares method. Their tendencies show that both
method’s smearing capability are similar. However, their
computing time are significantly different.

The effect of the modified Hyunk monotone cubic
interpolation can be examined from Fig.4. It seems that,
in this example, the present modification does not
destroy the monotonic behavior of the original Hyunk
cubic monotone interpolation. Figure5 shows the
comparison between the origina and modified Hyunk
cubic monotone interpolation. The relaxing of the strict
monotone condition of Eq.(3) (corresponding to k =3)
tobe k =4 does change the interpolation shape but still
keep monotonic property as shown. From these two test
cases, it seems that the present modification partially
releases the artificial modifications to some extend.
Except for the strange distribution with a linear segment
followed by a large jumping, it is generaly
recommended to employ k3 20 for most smooth
problems.

Now consider the result of applying an FFT
algorithm to the dotted line of Fig.l where the
non-periodic condition obvious introduces a large low
frequency error as shown in Fig.6. If the linear trend
remova method is applied to the dotted line’s data, such
that the original datais subtracted by a data located on a
straight line connecting the initial and final points. The
low frequency error is still presented as shownin Fig.7.

In Fig.1, the purple solid line is the result of

rearranging the long wave part of Fig.1 (black dotted line
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subtract the blue solid line) via the modified Hyunk
cubic monotonic interpolation [5]. In order to preserve
most of the physical characters, at least two new points
must be put in every segment between two successive
original data points. To reduce low frequency error, data
at two ends are truncated so that y=0 at two ends (the
resulting To is modified accordingly). The resulting
spectrum distribution is shown in Fig.8 which involves
small low frequency errors. In order to compare the
effect of different Gaussian kernel factor s for the
non-sinusoidal part, Fig.9 shows the result of employing
s =0.6 to smear the black dotted line of Fig.1. The
heavy solid line shows that the non-sinusoidal part
estimated by alarger s ismore straighten than that with
a smaler s . The resulting spectrum distribution is
shown in Fig.10. A careful comparison between Figs.8
and 10 reveals that their spectrum distributions are not
much different from each other, except that their
amplitude magnitudes differ from each other in the order
of 10%. For a till largers , the dominate frequency’s
amplitude increases about 5% with respect to that of
Fig.10. Since most problem does not have a reference to
identify the non-sinusoidal part, it is recommended to
employ a s 306l . (which is corresponding to
s =06 of Fig.10), where | _ is the largest wave
length estimated by the first dominate frequency.

Figure 11 is the data of vertical displacement at the
central point of a steel specimen excited by a hammer.
The green line is the origina data while the dotted red
line is the rearranged data using the modified Hyunk
monotonic interpolation. The resulting frequency
spectrum is shown in Fig.12 that involves insignificant
low frequency error.

Finally, for the sake of completeness, the procedure
to employ the present strategy islisted below.

1. Choose the desired datarange. For the sake of keeping
accurate data evaluation, additional data at two ends

are necessary. It would be better to add at least 2to 3
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wave lengths of shortest waves of interesting. pp.238-246, 1980.
4. de Boor and B. Swartz, "Piecewise Monotone

2. Perform the cubic moving least squares method to Interpolation,” J. Approx. Theory, vol.21, pp.411- 416,

separate the random and non-sinusoidal part with 1977.

suitable smoothing factorS s, respectively (iteration 5.Hyunk, _H' T, *  Accurate  Monotone Cubic
Interpolation,” SIAM J. Number. Anal. vol.30, no.1,

may be necessary). pp57-100, Feb.1993.

3. Use the monotonic interpolation method to redistribute 6. Brigham, E. O., “The Fast Fourier Transform,”

. . . Prentice-Hall Inc. Englewood Cliffs, N. J., 1974,
the remain data string at proper data points.

4. Find all zero pointsin the region outside the domain of Pp-16%
interest via a simple iteration procedure. From these
zero points, choose two end points so that the resulting 1__ :;Te;:%}:;gg:ﬁ;m s e e 07 2009
data range covers the domain of interest. In order to F e e o e

make the error as small as possible, it is necessary to
make sure that the zero crossing trends at two ends
must be the same, say ( - yf“)( o - y'gh‘] >0,
where x®* and x"" are those points with y» 0.
Moreover, differences between the first and second
order derivatives at two ends must be kept as small as
possible.

force

5. Distribute new data points with the number of new
Fig.1 Different parts of data for the pressure distribution

around a blade tip: thin red solid line is the original

data; black dotted line isthe result of employing the
6. Use asimple FFT algorithm to evaluate the spectrum. cubic moving least squares to smear the local
CONCLUSIONS oscillation (irregular short waves); thin blue solid
line is the short wave part; heavy blue solid line is
the long wave smeared from the black dotted line
s =04 ; and the purple solid line is the difference

data points =2™ and make sure that at least 2 new

points are located in every old data segment.

A simple and complete strategy to reduce the low

frequency error and to employ a simple FFT algorithm

without any modification is developed. Numerical between the green dotted line and blue heavy solid
examples show the robustness of the procedure. line that isthe long wave part of the original data.
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Fig.3 Theresidue variation with respect to the smoothing

factor s :

thin red line is result of employing the

Gaussian smoothing method and heavy green lineis
that employing the cubic moving least sgquares

method.

Soid line: given data (11 points)
oF doted fine: with k= 20

Fig.4 The modification of

Eqgs.(6,7) does not

significantly change the monotone character of the
Hyunk monotone interpolation.

heavy red solid line :input data (

9 dotted Hack line
with k=4

11 paints)
thin blte solid line ‘resut o HywnK's monotone cubi cintepdation
resutl ofmodfied monotone cubicintemolati on

Fig.5 Comparison between results of the original Hyunk
monotone cubic interpolation k=3 (thin blue
line) and the present modification with parameter

k=4 (dotted line).
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Fig.6 The frequency spectrum of the dotted data of Fig.1,
where the large non-periodic boundary condition
introduces large errors in the low frequency

250
225 The frequencyspectrum distibution

vith shortest signa = 0.6 and linear trend removal
200 the linear trend removal intoduces lowfrequencyermor

amplitude
[
~ 5 K &
a S oo

o
=)

25

L L M |
40 50

20 30
mode-no.

Fig.7 Resulting spectrum of treating the dotted data of
Fig.1 via the linear trend removal, the linear
trend removal still
modification over the low frequency range.

introduce a significant

Thefrequercy spectrum distribution
with shartestsigma = 0.

150 wuncate left. :0-714hpt
wrrcate right : 2762- 3000-th pt

20 30
mode-no.

Fig.8 The frequency spectrum of the purple solid line of
Fig.1 whose datais truncated at two ends.
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black dotted line

thin blue solid line
purple solid line

force

: smoothed wave (sigma = 0.05)
heavy Hue solid line : long wave (sigma =0.6)

: shat wave part
:long wave part

Fig.9 Data for the pressure distribution around a blade tip,

heavy blue solid lineis the long wave smeared from
the black dotted line with s =0.6, other lines are

the same as that of Fig.1.

200
175 The frequency spectum distributon
with shortest sigma = 0.05
non-periodic sign a= 0.6
150 tuncate left” - 0 11-th pt
tuncate right :2699 3000-th pt.
125
@
o
3
£100
a
75
50
25
20 30
mode-no.

Fig.10 The frequency spectrumof the purple solid line of

Fig.9 whose data is truncated at two ends.

Dashedline  : original data 2029 poirts

thin dashed line: Output of monotonic i nterpd ation, 4096 points

Fig.11 The original data coincides with the rearranged

data.
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Experimentd Daa's Frequency Distribution

50 100 150
mode-no.

200

Fig.12 The frequency spectrum with negligible low

frequency error.
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