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ABSTRACT 
    A simple and fast strategy is proposed to evaluate the frequency spectrum of a string of data whose total 

number may not be of 2n and the time intervals between successive data may be non-uniform. The cubic 
moving least squares method is first employed to separate both the non-sinusoidal and random parts. Next, 

the Hyunk M3A cubic monotonic interpolation is modified and is employed to convert the remaining data 

into a data string with uniform time intervals and the total data number is exactly 2m . Finally, a simple FFT 
algorithm is employed to provide the spectrum with negligible low frequency error. 

Keywords: Cubic Moving Least Squares, FFT, Proper Number of Data, Periodic Condition . 

 
INTRODUCTION 

     Because of the rapid development of computer 

hardware and software, the application of a 

computational fluid dynamical program to unsteady 

problem becomes a practical issue. During the post 

processing step, to inspect the frequency spectrum at 

some typical points is a convenient tool to look into the 

physical of the flo w field. Most computational programs 

have characters of changing time step size to get merits 

of both computational stability and computing efficiency. 

As a consequence, a result of an unsteady CFD program 

may involve non-uniform time step and have variable 

step size where number of data points is not exactly 

equal to some power of 2 or the products of some powers 

of integers. Consequently, how to employ a fast Fourier 

transform algorithm to evaluate the frequency may 

become a difficult issue. 

     During the developing period of the fast Fourier 

transform, most people thought that an analogical data 

string may be exact. On the other hand, the fast Fourier 

transform is a digital version which can only capture 

finite number of data. Consequently, most commerc ial or 

available fast Fourier transform algorithms have been 

embedded with the following functions to suppress the 

aliasing error [1]: side-lobe leakage suppression, adding 

zeros for circular correlation, and zoom transform etc.. 

Most of these modifications become trivial, for a result 

of a computational fluid dynamical or other program, 

because the output data is principally located at finite 

points. In other words, it seems that the original FFT 

algorithm without any modification is more suitable for 

the post processing than an available FFT program in a 

commercial software package. 

    To the author’s knowledge, the practical problems 
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of obtaining the frequency spectrum from a result of the 

computational fluid dynamical program are: (1) how to 

reasonably removing the numerical error (does the 

classical statistical methods work?); (2) how to face the 

problem of non-uniform time steps; and (3) how to treat 

the problem of data number 2m≠ ? In this study, a 

simple strategy is proposed to solve the last two 

problems. 

ANALYSIS  

Cubic Moving Least Squares Method 

Consider a set of data, say ( , ), 0,i ix y i n= . A 

moving cubic least squares method defines the error 

measure function at a point kx  in form of [2] 
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where 
2 2( ) /(2 )i kx xe σ− −  is a Gaussian kernel function with a 

smoothing factor σ . Following the classical least 

squares method, the minimizing of kI  with respect to 

parameters kja  resulting a set of linear simultaneous 

algebraic equations. If the polynomial of ( )kf x  takes a 

constant value, the method becomes a Gaussian 

smoothing method. If the smoothing factor σ is a 

constant, like the Gaussian smoothing, the FFT algorithm 

can be employed for the present approach. The required 

computing count for multiplication and division is 

4 ( 1)ln( 1)n n+ + plus the operating count to evaluate a 

set of 4 linear equations. 

    The numerical result of a computational fluid 

dynamical program often involves non-sinusoidal part, 

pseudo-sinusoidal and random parts. It is recommended 

to employ the moving cubic least squares method to 

isolate the non-sinusoidal and the random parts, with 

large enough and small enough smoothing factorsσ , 

respectively. 

Monotonic Cubic Interpolation Method 

   Consider a Hermite cubic interpolation between 

points 1( , )i ix x +  
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The sufficient monotonic condition of this cubic interpo- 

lation is that [3,4] 

  1 1 / 2 1| ' |, | ' | 3 , ' ' 0i i i i iy y s y y+ + +≤ ⋅ ≥      (3) 

Once the monotonic condition is violated, Fritsch and 

Carlson [3] proposed to reset 'iy  a new value satisfying 

Eq.(2). In 1992, Hyunk [5] developed several ENO type 

monotonic cubic interpolants. In this study, his M3A 

interpolation is employed that gives limiter to the slopes 
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At two ends, the Hyunk boundary condition will be 

employed [5]. As will be discussed later, this cubic 

interpolation might introduce too much artificial modify- 

cation. 

   To the authors’ knowledge, the magnitude of spurious 

oscillation of the cubic spline interpolation is roughly 

proportional to the ratio of 1/2| / |i iy s +  and 1 1/2| / |i iy s+ + . 

For a abrupt discontinuous jump next to a straight line, 

these ratios might becomes very large. Otherwise, these 

ratios may be of finite value. Therefore, the desired 

switching function between the cubic spline interpolation 

and monotonic cubic interpolation is chosen to be  

  1 1 / 2 1| ' |, | ' | , ' ' 0
4

i i i i iy y ks y y
k

+ + +≤ ⋅ ≥
≥

        (5) 

Simultaneously, in Eq.(4), the slope of monotonic cubic 

interpolation is modified to  
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In order to reduce error in the limiting case, the cubic 

interpolation is further degenerated to be a linear 

equation whenever three successive points are almost 

collinear, say 
' '
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where ε  is an user specified tolerance. This monotonic 

interpolation method requires an operation count of 

multiplication and division in the order of k n⋅ +  

( 3)L m+ ⋅ , where n  is number of old data points, 

30k ≈ , m  is number of new data points, and L  is 

the count of a searching procedure to allocate an (x ∈  

old ,ix old
1)ix + . 

Fast Fourier Transform 

    For the sake of simplicity and to employing the data 

structure of a computer, it seems convenient to employ 

the simple fast Fourier transform whose data points are 

exactly equal to 2 ( 1)m n= +  [6]. For a set of data, the 

Fourier transform pair is  
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where 0(0, )T  is the data range, 0 1f = 0/T is the funda- 

mental frequency. For convenience, in this study, the 

resulting amplitudes are expressed in terms of their 

absolute values. From the integration by part formula, it 

is easy to prove that 
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If there are jumps at two ends, the low frequency error 

will be introduced. In other words, it is would be better 

to choose data points at two ends with periodic , ',y y  

and "y ’s. Since it is not easy to satisfy all of these 

conditions, it is helpful to choose data at two ends with 

zero y and 'y  and "y  being almost periodic. Eq.(9) 

also shows the fact that a shorter data range gives a 

smaller low frequency error due to jump at two ends and 

other artificial modification upon the original data.  

Results and Discussions  

    Consider the original data (shown as thin red line in 

Fig.1), which is the pressure history around a turbine 

blade evaluated by a computational fluid dynamics code. 

The black dotted line is the result smeared by the cubic 

moving least squares method with 0.05σ = . A careful 

inspection upon the difference between the red and black 

dotted lines (shown as thin blue solid line around the 

0y =  axis) reveals that the short wave part removed by 

the moving least squares method is not a well organized 

composite wave formed from complete sinusoidal waves 

and noise. In other words, it may involve numerical error 

and only part of true physics of the flow field for which 

further studies are necessary. The heavy blue solid line 

can be considered as the non-sinusoidal part that is 

obtained by using 0.4σ =  to smear the black dotted 

line. The purple solid line is the difference between the 

black dotted line and heavy blue line. From this example 

it seems that the cubic moving least squares method is a 

convenient tool to decouple the random and 

non-sinusoidal parts from the original data.  

     For the sake of completeness, a sine wave with 

wave length 0.5λ =  (every wave length is resolved by 

50 points) is smeared by the Gaussian smoothing (error 

is shown as thin red line in Fig.2) and cubic moving least 

squares (as heavy green line) methods, respectively. 

Those shown in Fig.2 are the maximum error (reduction 

of the local maximum of the sine wave) generated by 

two different smoothing methods. It is obvious that, for 

the Gaussian smoothing, the flatten effect become 

insignificantly small only if 0.025σ λ< . On the other 

hand, for the cubic moving least squares method, the 
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flatten effect at the local maximum point is small if 

0.1σ λ< . Obviously, the cubic moving least squares has 

a much better curvature resolving capability than that of 

the Gaussian smoothing. If a still large smoothing factor 

σ  is employed, the sine wave may be flatten to be a 

straight line. Fig.3 shows the remaining peak value 

(designed as residue) of both smoothing methods. Their 

residues are negligible when 0.5σ λ>  for the Gaussian 

smoothing method and 0.6σ λ>  for the cubic moving 

least squares method. Their tendencies show that both 

method’s smearing capability are similar. However, their 

computing time are significantly different. 

    The effect of the modified Hyunk monotone cubic 

interpolation can be examined from Fig.4. It seems that, 

in this example, the present modification does not 

destroy the monotonic behavior of the original Hyunk 

cubic monotone interpolation. Figure.5 shows the 

comparison between the original and modified Hyunk 

cubic monotone interpolation. The relaxing of the strict 

monotone condition of Eq.(3) (corresponding to 3k = ) 

to be 4k =  does change the interpolation shape but still 

keep monotonic property as shown. From these two test 

cases, it seems that the present modification partially 

releases the artificial modifications to some extend. 

Except for the strange distribution with a linear segment 

followed by a large jumping, it is generally 

recommended to employ 20k ≥ for most smooth 

problems. 

   Now consider the result of applying an FFT 

algorithm to the dotted line of Fig.1 where the 

non-periodic condition obvious introduces a large low 

frequency error as shown in Fig.6. If the linear trend 

removal method is applied to the dotted line’s data, such 

that the original data is subtracted by a data located on a 

straight line connecting the initial and final points. The 

low frequency error is still presented as shown in Fig.7. 

    In Fig.1, the purple solid line is the result of 

rearranging the long wave part of Fig.1 (black dotted line 

subtract the blue solid line) via the modified Hyunk 

cubic monotonic interpolation [5]. In order to preserve 

most of the physical characters, at least two new points 

must be put in every segment between two successive 

original data points. To reduce low frequency error, data 

at two ends are truncated so that 0y =  at two ends (the 

resulting 0T is modified accordingly). The resulting 

spectrum distribution is shown in Fig.8 which involves 

small low frequency errors. In order to compare the 

effect of different Gaussian kernel factor σ  for the 

non-sinusoidal part, Fig.9 shows the result of employing 

0.6σ = to smear the black dotted line of Fig.1. The 

heavy solid line shows that the non-sinusoidal part 

estimated by a larger σ is more straighten than that with 

a smaller σ . The resulting spectrum distribution is 

shown in Fig.10. A careful comparison between Figs.8 

and 10 reveals that their spectrum distributions are not 

much different from each other, except that their 

amplitude magnitudes differ from each other in the order 

of 10%. For a still largerσ , the dominate frequency’s 

amplitude increases about 5% with respect to that of 

Fig.10. Since most problem does not have a reference to 

identify the non-sinusoidal part, it is recommended to 

employ a max0.6σ λ≥ (which is corresponding to 

0.6σ =  of Fig.10), where maxλ is the largest wave 

length estimated by the first dominate frequency. 

    Figure 11 is the data of vertical displacement at the 

central point of a steel specimen excited by a hammer. 

The green line is the original data while the dotted red 

line is the rearranged data using the modified Hyunk 

monotonic interpolation. The resulting frequency 

spectrum is shown in Fig.12 that involves insignificant 

low frequency error. 

    Finally, for the sake of completeness, the procedure 

to employ the present strategy is listed below. 

1. Choose the desired data range. For the sake of keeping 

accurate data evaluation, additional data at two ends 

are necessary. It would be better to add at least 2 to 3 
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wave lengths of shortest waves of interesting. 

2. Perform the cubic moving least squares method to 

separate the random and non-sinusoidal part with 

suitable smoothing factorσ ’s, respectively (iteration 

may be necessary). 

3. Use the monotonic interpolation method to redistribute 

the remain data string at proper data points.  

4. Find all zero points in the region outside the domain of 

interest via a simple iteration procedure. From these 

zero points, choose two end points so that the resulting 

data range covers the domain of interest. In order to 

make the error as small as possible, it is necessary to 

make sure that the zero crossing trends at two ends 

must be the same, say ( ) ( )left left right right
1 1 0l l r ry y y y+ +− − > , 

where left
lx  and right

rx  are those points with 0y ≈ . 

Moreover, differences between the first and second 

order derivatives at two ends must be kept as small as 

possible. 

5. Distribute new data points with the number of new 

data points =2m  and make sure that at least 2 new 

points are located in every old data segment. 

6. Use a simple FFT algorithm to evaluate the spectrum. 

CONCLUSIONS 

  A simple and complete strategy to reduce the low 

frequency error and to employ a simple FFT algorithm 

without any modification is developed. Numerical 

examples show the robustness of the procedure. 

ACKNOWLEDGEMENT 

    This work is supported by the National Science 

Council of Taiwan under the grant number NSC-91 

-2212-E006-098. 

REFERENCES 

1. Bendat, J. S, and Piersol, A. G., “Random Data 
Analysis and Measurement Procedures,” 3rd ed., John 
Wiley & Sons, New York, 2000, Chapters 10 & 11, 
pp.349-456. 

2. Jeng, Y. N., “The Moving Least Squares and Least 
p-Power Methods for Random Data,” The 7-th 
National Computational Fluid Dynamics Conference, 
P-9 to P-14, Aug. 2000.  

3. Fritsch, F. N. and R. E. Carlson, "Monotone Piecewise 
Cubic Interpolation," SIAM Numer. Analy. Vol.17, 

pp.238-246, 1980. 
4. de Boor and B. Swartz, "Piecewise Monotone 

Interpolation," J. Approx. Theory, vol.21, pp.411- 416, 
1977.  

5.Hyunk, H. T., “ Accurate Monotone Cubic 
Interpolation,” SIAM J. Number.  Anal. vol.30, no.1,  
pp57-100, Feb.1993. 

6. Brigham, E. O., “The Fast Fourier Transform,” 
Prentice-Hall Inc. Englewood Cliffs, N. J., 1974, 
pp.164. 

 

 
 
 
 
 
 
 
 
 

Fig.1 Different parts of data for the pressure distribution 
around a blade tip: thin red solid line is the original 
data; black dotted line is the result of employing the 
cubic moving least squares to smear the local 
oscillation (irregular short waves); thin blue solid 
line is the short wave part; heavy blue solid line is 
the long wave smeared from the black dotted line 

0.4σ = ; and the purple solid line is the difference 
between the green dotted line and blue heavy solid 
line that is the long wave part of the original data. 

 
 
 
 
 
 
 
 
 

Fig.2 The maximum error at the peak of sine wave with 
wave length 0.5λ =  (50 points per every wave 
length) upon smearing of the cubic moving least 
squares (heavy green line) and the Gaussian 
smoothing (thin red line). 
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Fig.3 The residue variation with respect to the smoothing 

factor σ : thin red line is result of employing the 

Gaussian smoothing method and heavy green line is 

that employing the cubic moving least squares 

method. 

 

 

 

 

 

 

 

 

Fig.4 The modification of Eqs.(6,7) does not 

significantly change the monotone character of the 

Hyunk monotone interpolation. 

 

 

 

 

 

 

 

 

 

Fig.5 Comparison between results of the original Hyunk 

monotone cubic interpolation 3k =  (thin blue 

line) and the present modification with parameter 

4k =  (dotted line). 

 

 
 
 
 
 
 
 
 
 
 
 
Fig.6 The frequency spectrum of the dotted data of Fig.1, 

where the large non-periodic boundary condition 

introduces large errors in the low frequency 

range. 

 

 

 

 

 

 

 
 
 
Fig.7 Resulting spectrum of treating the dotted data of 

Fig.1 via the linear trend removal, the linear 

trend removal still introduce a significant 

modification over the low frequency range. 

 
 
 
 
 
 
 
 
 
Fig.8 The frequency spectrum of the purple solid line of 

Fig.1 whose data is truncated at two ends. 
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Fig.9 Data for the pressure distribution around a blade tip,  

heavy blue solid line is the long wave smeared from 

the black dotted line with 0.6σ = , other lines are 

the same as that of Fig.1. 

 

 

 

 

 

 

 

 

 

Fig.10 The frequency spectrum of the purple solid line of 

Fig.9 whose data is truncated at two ends. 

 

 

 

 

 

 

 

 

 

 

 

Fig.11 The original data coincides with the rearranged 

data. 

 

 

 

 

 

 

 

 

 

 

Fig.12 The frequency spectrum with negligible low 

frequency error. 
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摘  要 

 
  本文提出一套簡易之方法，將數據的隨機和非週期

函數部份用移動式最小平方誤差法移除，再切除左右兩

端點的數據，使之都為為零。不論數據總數等不等於2m

及數據間格非均勻，隨後將數據用非震盪式單調內插法

重組使數據總點數為2m之均勻數據點。最後應用 FFT

轉換求頻譜。數值測試結果顯示本文方法的結果可以幾

乎完全消除低頻誤差。  

 

關鍵詞：FFT轉換，移動式最小平方誤差法，非震盪式

單調內插法，消除低頻誤差。  

 

 

 


