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Abstract  
    The error comparison of the resulting smooth 

parts generated by two sharp high/low passed filters is 
performed numerically. The first filter employs the linear 
trend removal and a Fast Fourier Transform (FFT) 
algorithm and the second filter employs the iterative and 
diffusive filter and the FFT algorithm. After removing 
the non-sinusoidal and low frequency parts, both 
methods generate the spectrum of the high frequency 
part. The subsequent filtering step is finished by impose 
rectangular window to the spectrum. A given test case 
shows that the second filter is convenient and can 
achieve the error level specified by the iterative filter and 
data resolution. If the desired high frequency part of the 
data string has a zero value at the two data ends, the 
resulting error of the first filter is much better than that of 
the second filter. For a general case, the error level of the 
smooth part generated by the second filter is smaller than 
that of the first filter. The test of a turbulent flow data 
string shows the procedure of employing the sharp filter 
with iterative Gaussian smoothing. 
Keywords：sharp filters, error comparison.  

1. Introduction 
     Because of the rapid development of computer 
hardware and software, the capability of collecting huge 
number of long data string increases rapidly. Generally, a 
real data string frequently has a complex structure which 
changes main characters rapidly. People might hope that  
the Fourier spectrum can be considered as a parameter 
representation of time series data, nyyy ...,, ,10 , where 
n  is the data size [1-2]. Unfortunately, the Fourier 
spectrum is an exact parameter representation of the 
original data only if the data and all the derivatives up to 

)1( −n th order are periodic. Since most data string can 
not satisfy these restrictions simultaneously, the 
corresponding discrete Fourier spectrum at most 
represents the original data string in a weak sense. In 
other words, a Fourier spectrum frequently involve 
certain minor errors such that some dominant modes are 
slightly distorted and almost all minor modes are 
seriously faded. In Ref.[3-10], an approximate Fourier 
sine spectrum was proposed to replace the Fourier 
spectrum. Note that a Fourier sine spectrum requires 

0=y  at two ends and odd function properties. In order 
to satisfy these requirements, finite segments around the 
two ends should be discarded and the non-sinusoidal part 

must be removed. Therefore, most of the resulting 
Fourier sine spectrums may slightly deviate form their 
corresponding Fourier spectrums. 
    In Ref.[4-10], The non-sinusoidal part is estimated 
by the smooth part generated by the iterative and 
diffusive filter. Unfortunately, the transition zone of the 
filter cannot be made sharp enough with a reasonable 
computing time. In Ref.[11], two simple and fast sharp 
filters are proposed: one employs the linear trend 
removal and an FFT algorithm and the second filter 
employs the iterative and diffusive filter and the FFT 
algorithm. However, their precise performances are not 
compared. This study examines their errors. 

 

2. Theoretical Development 
2.1 The Sharp Filter Using the Iterative Gaussian 

Smoothing 

2.1.1 The Iterative Gausian Smoothing 
Consider a set of data Niyt ii ,0),,( = . After 

employing the Gaussian smoothing method [3-10], the 
smooth response is 
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The iterative Gaussian smoothing employs the following 
procedure: 
1. Given the smoothing factor σ  and iteration step m ; 
2. Employ the Gaussian smoothing to smooth the data 

and obtain jy ,1  and jy ,1' , where jy ,1  is the 

smoothed part, and jy ,1'  is the high frequency part. 
3. Repeatedly smooth the high frequency part, 

mky jk ,...,2,1,' , = . 

4. jmy ,'  is the desired high frequency part and 

jmj yy ,'−  is the smooth part. 
If the original data is expressed in the following form 
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The first smooth part is 
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For the interior points remote from 0  and N , it can be 
proven that 

1]/2exp[)/( 222 ≤−≈ nna λσπλσ              (4) 
It can also been proven that 

'
,,,2,1 ... imiimiii yyyyyy −=+++=  

∑
= ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

N

n n

i
n

n

i
nmn

t
c

t
bA

0
,,

2
sin

2
cos

λ
π

λ
π

σ        (5) 

Similarly, the interior points remote from 0  and N  
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such that the iterative filter is diffusive. The smoothing 
factor σ  and iteration steps m  are solved from a 
given transition zone ),( λλc  
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where δ  is an user specified parameter. 

2.2 The Fourier Sine Spectrum Generator 

    A careful examination upon the discrete Fourier 
transform [1,2] reveals that, for a perfect Fourier 
expansion, the necessary periodic conditions should be 
held for all y , 'y , …, and )1( −Ny . Unfortunately, 
most data can not satisfy such severe restrictions. If the 
data involves the non-sinusoidal part, the resulting 
spectrum will be contaminated by the resulting Fourier 
components which run over the whole spectrum domain 
and is often referred as the Direct Current (DC) 
contamination. Consequently, current spectrums of most 
data strings are projections in weak sense. According to 
numerical experiments, the weak projection leads to two 
undesired imperfections: minor modes are seriously 
faded and dominated modes are slight distorted. 

    In ref.[3-10], the iterative Gaussian smoothing is 
employed to remove the non-sinusoidal part. Since the 
iterative Gaussian smoothing has error around the two 
ends, data segments around the two ends of the 
remaining sinusoidal part should be dropped. A search 
procedure and an interpolation method are employed to 
locate zero values of sinusoidal part. The data string 
beyond these zero points should be further dropped. 
After employing the modified monotonic cubic 
interpolation [1,12] to redistribute the sinusoidal data so 
as to obtain data size to be integer power of 2, the odd 
function mapping makes sure that all the periodic 
conditions are satisfied. Since the cubic interpolation 
procedure is employed and data segments are dropped 
around the two ends, the resulting Fourier sine spectrum 
will slightly deviate from the original sinusoidal part’s 
spectrum. It is believed that the spectrum error is 
approximately equal to the smallest possible level. 
 

2.3 Two Sharp and Diffusive Filters 

2.3.1 The First Sharp filter [11] 

2.3.1.1 The Linear Trend Removal 
   A convenient method to remove the non-sinusoidal 
part is to assume the sinusoidal part taking zero values at 
the two data ends. The non-sinusoidal part is just the 
linear interpolation between the two end points and the 
sinusoidal part is the result by subtracting the linear 
interpolation from the original data. In general, this 
approach does not work. However, it provides a simple 
method to remove a large fraction of the non-sinusoidal 
part. Therefore, the linear trend removal is employed to 
first estimate the non-sinusoidal part. Since the zero 
value points around the two ends of a data string is 
generally not just the two ends, it is recommended to 
estimate the possible zero value points. 
 

2.3.1.2 The Sharp Filter Using the Linear Trend Removal 
and Fourier Sine Spectrum Generator 

The first sharp filter employs the linear trend 
removal and Fourier sine spectrum generator. Its 
procedure is listed below. 
1. Properly choose two end points of the data string. 

Drop data segments beyond the two points. 
2. Use the linear trend removal so that the data string 

has zero value at the two ends. 
3. Use the Fourier sine spectrum generator to find the 

spectrum. 
4. Choose the desired cut-off frequency and perform 

the inverse Fourier transform of the modes whose 
frequency is smaller than the cut-of frequency. Add 
this inversed data to the linear part removed by the 
linear trend removal. The resulting data is the 
smoothed part. 

5. Find the Fourier sine spectrum of the remaining high 
frequency part. Again, remove the modes whose 
frequencies are small than the cut-off frequency. 

6. The other sharp band-passed limited spectrum can 
be directly obtained by embedding unit rectangular 
window on the spectrum. The band-passed limited 
data string is the corresponding inverse Fourier 
transform. 

 
2.3.2 The Second Sharp Filter 
  The required number of the iteration steps, m  
becomes an incredibly large number for a narrow 
transition zone. Note that, if the Fourier spectrum is 
exact, the step function type filter imposing on the 
spectrum gives a diffusive filtering response too. If the 
data length is long enough to make sure that Nt1.0<λ , 
the iterative filter can employ a relative wide transition 
zone, for example, 3/ =cλλ , Eqs.(7) gives 17≈m  
and 701712.0/ =cλσ . After cutting data segments 
around the two ends whose lengths σ6≈ , the Fourier 
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sine spectrum generator of previous sub-section gives a 
spectrum with small error. Finally, the sharp and 
diffusive filtering procedure with cutting frequency at 

cλ gives the high-passed spectrum by eliminating all 
modes of the spectrum whose cλλ > . For the sake of 
demonstrating the resulting error, the corresponding 
results will not cut segments around the two ends. 
 
    The second sharp filter basing on the iterative 
Gaussian smoothing is composed of the following 
procedure: 
1. Use an FFT algorithm to estimate the Fourier 

spectrum of a data string. 
2. Determine the cut-off frequency corresponding to 

cλ  and λ . 
3. Find the corresponding smooth factor σ and 

iteration step m  by solving Eqs.(7). 
4. Perform the iterative filter basing on the iterative 

Gaussian smoothing to obtain the estimated 
smoothed and high frequency part. 

5. Find the Fourier sine spectrum of the estimated high 
frequency part. 

6. Remove all the modes whose cλλ >  and find the 
resulting high frequency part. The difference 
between the original data and this high frequency 
part is the smooth part. 

7. The other sharp band-passed limited spectrum can 
be directly obtained by embedding unit block 
window on the spectrum. The band-passed limited 
data string is the corresponding inverse Fourier 
transform. 

 
2.4 A New Spectrogram Generator [7,8] 
   A previous study showed that both the Morlet and 
Gabor transforms impose a Gaussian window on time 
domain and cause a corresponding Gaussian window on 
the spectrum. Since the Fourier sine spectrum generator 
gives an accurate spectrum. it was proposed to direct 
impose a window on the spectrum domain. If a Gaussian 
window is employed, the corresponding inverse FFT will 
give 
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where the center  frequency of the window is located at 

Nk tkf /= . After scanning all the desired frequency, the 
corresponding spectrogram can be obtained. 

3. Results and Discussions  
 
The following composite wave is employed to 

examine the error of the smooth part generated by two 
sharp filters, respectively. 
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where the first line of the equation represents the 
non-sinusoidal and low frequency parts and the second 
and third lines are the high frequency part. The parameter 

0=d  for the case of sinusoidal part takes a zero value 
at the two ends, and 4/π=d  for non-zero end case. 
 
   Figure 1 is the result of the first sharp filter with 

0=d  in Eq.(9) where the cut-off frequency is set at 
1=f Hz. The figure shows that the simple method 

works very well, the largest error is approximately equal 
to 310− .  By taking 625.0=cλ  (i.e. 6.1=f Hz ) 

and 4/ =cλλ , the smooth result of employing the 
second sharp filter has the error distribution shown in 
Fig.2. By decreasing the error level of iteration to be 

0001.0=δ , the error distribution in the interior regions 
where 73 << t is approximately equal the that shown in 
Fig.1. However, around the two ends, the error of Fig.2 
is obviously larger than that shown in Fig.1 because of 
the error introduced by the iterative Gaussian smoothing. 
As a first conclusion for the case where the high 
frequency part takes a zero value at the two ends, it 
seems that the performance of the first sharp filter is 
better than that of the second sharp filter. 
 
   For the test case with 4/π=d , where the high 
frequency part is not zero, the result of the first sharp 
filter without dropping data around the two ends is 
shown in Fig.3. The resulting error distribution is much 
worse than that shown in Fig.1. The reason is that the 
estimation of the linear trend removal is not good around 
the two ends. As a consequence, the estimated smooth 
part is seriously deviated from the original smoothed part. 
Figure 4 shows the error response of dropping segments 
of length 8192/9090 =Δx at the two ends. Although the 
error around the two ends is smaller than that shown in 
Fig.3, the error of this figure becomes slight worse than 
that of Fig.3 in the interior points remote from two ends. 
The error response shown in Fig.5 drops 94 points at the 
left end and 127 points at the right end is better than that 
shown in Fig.3 and 4, respectively. Now the end values 
are 03708.094 =y and 005104.08065 −=y which is 
closer to zero value than that of Fig.3 and Fig.4, 
respectively. If the dropping points is properly chosen so 
that 4

256 105495.1 −×=y  and 5
6808 104119.1 −×−=y , 

the error response is shown in Fig.6 which is smaller 
than that of Fig.5 but is still worse than that of Fig.2. 
 
     If the second sharp filter is employed, its error 
distribution is shown in Fig.7 which has not much 
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different from that of Fig.2. Again, error propagation 
range increases as the iteration number increases (and 
hence error level decreases). The error responses of those 
cases of dropping data around the two ends are all 
similar to that shown in Figs.2 and 7 (except that the 
accurate range is shrunk) so that they are not shown here. 
 
    The above discussions show that the first sharp 
filter can be an effective filter with small error only if the 
high frequency part has an almost zero value around the 
two ends. Otherwise, its performance is not good enough. 
On the other hand, the second sharp filter is not good 
enough around the two ends. It can achieve a small error 
result if the data length is long enough. Therefore, it is 
concluded that: it is recommended to employ the second 
sharp filter employing the iterative Gaussian smoothing. 
 
     The raw data shown as the thin line in Fig.8 is the 
u -velocity data measured at the near wake region of a 
low speed turbulent flow over a bluff body [13]. The 
measured point is at a distance of D5.0 from the base of 
the bluff body, where D  is the width of the bluff body. 
The FFT algorithm is shown in Fig.9a (where the high 
frequency part is obtained by employing the iterative 
Gaussian smoothing with parameter 126,3 == mσ  
which is corresponding to 3145.2≈λ seconds). By 
consider 3/1=cλ second and 3/ =cλλ , the iterative 
Gaussian smoothing with the parameter of ,2239.0=σ  

17=m gives the smooth part shown as heavy solid line 
in Fig.8.  With the cut-off frequency of 3Hz, the second 
sharp filter let the resulting high frequency part to have a 
spectrum shown in Fig.9b. Finally, the new spectrogram 
generator gives the amplitude and real parts shown in 
Fig.l0, respectively. From these spectrogram, the 
mode-mode interaction can be precisely extracted. 
 

4. Conclusions 
Two simple and fast sharp filters are compared. The 

numerical tests show that the sharp filter employing the 
iterative Gaussian filter can generate high accurate 
smooth part than that of the other sharp filter using the 
linear trend removal.  
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Fig.1 The original and estimated smooth parts (top) and 
error of the estimation (bottom, in 10log scale), the 
sinusoidal part has a zero value at the two ends, 
estimated by the first sharp filter. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.2 The original and estimated smooth parts (top) and 

error of the estimation (bottom, in 10log scale), the 
sinusoidal part has a zero value at the two ends, 
estimated by the second sharp filter. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.3 The original and estimated smooth parts (top) and 

error of the estimation (bottom, in 10log scale), the 
sinusoidal part does not have a zero value at the 
two ends, estimated by the first sharp filter. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.4 The original and estimated smooth parts (top) and 
error of the estimation (bottom, in 10log scale), 
discarding 90 points around the two ends but the 
sinusoidal part does not have a zero value at the 
two ends, estimated by the first sharp filter.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.5 The original and estimated smooth parts (top) and 

error of the estimation (bottom, in 10log scale), 
discarding 94 points at the left end and 127 points 
at the right end, estimated by the first sharp filter. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.6 The original and estimated smooth parts (top) and 

error of the estimation (bottom, in 10log scale), 
dropping 256 points at the left end and 1384 points 
at the right end, estimated by the first sharp filter. 
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Fig.7 The original and estimated smooth parts (top) and 

error of the estimation (bottom, in 10log scale), the 
sinusoidal part has a non-zero value at the two 
ends, estimated by the second sharp filter. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.8 Original and smooth part data (with =σ 0.7017, 

=m  17). 
 
(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 
 
 
 
 
 
 
 
 
 
 
Fig.9 (a) the original spectrum (top); and (b) and 

spectrum of high-pass filtered data (bottom) with 
cut-off freq. = 3 Hz. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.10 The amplitude and real part plots of the high 

frequency part. 
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兩個尖銳的擴散型濾波器之比較 
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摘要 
本文比較兩個簡易及快速的擴散型濾波器產生的

平滑部份之精確度。第一種方法使用線性移除法配合

快速傅式級數轉換法濾出非週期性資料和低頻部份，

第二種方法使用疊代式高斯平滑法配合快速傅式級數

轉換法移除非週期性和低頻部份。其後兩種方法都在

得到頻譜後，直接對頻譜取單為階梯窗口以得到尖銳

的高低通濾波結果，或以矩形窗口以得到尖銳的帶通

頻譜。數值測試結果顯示第二種使用疊代式高斯平滑

法的尖銳濾波器較能釋應一般數據，在其內部點得到

高精確的結果。 
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