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Abstract

The error comparison of the resulting smooth
parts generated by two sharp high/low passed filters is
performed numerically. The first filter employs the linear
trend removal and a Fast Fourier Transform (FFT)
algorithm and the second filter employs the iterative and
diffusive filter and the FFT algorithm. After removing
the non-sinusoidal and low frequency parts, both
methods generate the spectrum of the high frequency
part. The subsequent filtering step is finished by impose
rectangular window to the spectrum. A given test case
shows that the second filter is convenient and can
achieve the error level specified by the iterative filter and
data resolution. If the desired high frequency part of the
data string has a zero value at the two data ends, the
resulting error of the first filter is much better than that of
the second filter. For a general case, the error level of the
smooth part generated by the second filter is smaller than
that of the first filter. The test of a turbulent flow data
string shows the procedure of employing the sharp filter
with iterative Gaussian smoothing.
Keywords : sharp filters, error comparison.

1. Introduction

Because of the rapid development of computer
hardware and software, the capability of collecting huge
number of long data string increases rapidly. Generally, a
real data string frequently has a complex structure which
changes main characters rapidly. People might hope that
the Fourier spectrum can be considered as a parameter
representation of time series data, yg,y; ..., Yo, where

n is the data size [1-2]. Unfortunately, the Fourier
spectrum is an exact parameter representation of the
original data only if the data and all the derivatives up to
(n—1) th order are periodic. Since most data string can

not satisfy these restrictions simultaneously, the
corresponding discrete Fourier spectrum at most
represents the original data string in a weak sense. In
other words, a Fourier spectrum frequently involve
certain minor errors such that some dominant modes are
slightly distorted and almost all minor modes are
seriously faded. In Ref.[3-10], an approximate Fourier
sine spectrum was proposed to replace the Fourier
spectrum. Note that a Fourier sine spectrum requires
y=0 at two ends and odd function properties. In order

to satisfy these requirements, finite segments around the
two ends should be discarded and the non-sinusoidal part
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must be removed. Therefore, most of the resulting
Fourier sine spectrums may slightly deviate form their
corresponding Fourier spectrums.

In Ref.[4-10], The non-sinusoidal part is estimated
by the smooth part generated by the iterative and
diffusive filter. Unfortunately, the transition zone of the
filter cannot be made sharp enough with a reasonable
computing time. In Ref.[11], two simple and fast sharp
filters are proposed: one employs the linear trend
removal and an FFT algorithm and the second filter
employs the iterative and diffusive filter and the FFT
algorithm. However, their precise performances are not
compared. This study examines their errors.

2. Theoretical Development

2.1 The Sharp Filter Using the Iterative Gaussian
Smoothing

2.1.1 The lterative Gausian Smoothing
Consider a set of data (tj,y;),i=0N . After

employing the Gaussian smoothing method [3-10], the
smooth response is

_ 1N (t-t)2/20° N (t-t)? /20

V= vie VT L= Ye T
Lizo i=0

The iterative Gaussian smoothing employs the following

procedure:;

1. Given the smoothing factor o and iteration step m;

2.Employ the Gaussian smoothing to smooth the data
and obtain y;; and y'yj, where y; is the

smoothed part, and y'; j is the high frequency part.

3.Repeatedly smooth the high
ylk,j ,k=12,..,m.

4, Y'm,j
Yj—Y'mj Isthesmooth part.

frequency part,

is the desired high frequency part and

If the original data is expressed in the following form

N 27t 27t
y(ti) = X b, cos[ ']+cn sin[ 'J )
n=0 ﬂn /ln
The first smooth part is

N . .
Vii Y a(o/ A, )by cos[ Z/ft' J+cn sin[z/f:t' j}

n=0 n n

N 2t
a(o, 4y) = % Ze_tizl(z"z) cos L (3)

i-0 A4
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For the interior points remote from 0 and N, it can be
proven that

a(o ! A ~ exp[-27%0? 1 21<1 (4)
It can also been proven that

Vi=Yoi+Yoi+tYmi=VYi— y;n,i

= §0An,m,o- |:bn COS(ZﬂﬂJ +Cp Sm(iﬂj} ®)

Similarly, the interior points remote from 0 and N
Anmo =1-[L-exp{-4z%c? 1 23)]" )
0<Aymeo <1

such that the iterative filter is diffusive. The smoothing
factor o and iteration steps m are solved from a

given transition zone (A, A)
1-[L-exp(-4x2c? 1 A" =5

1-[l-exp(-472c? 1 22)™ =1-5
where & is an user specified parameter.

U]

2.2 The Fourier Sine Spectrum Generator

A careful examination upon the discrete Fourier
transform [1,2] reveals that, for a perfect Fourier
expansion, the necessary periodic conditions should be

held for all y, y', ..., and y(N‘l). Unfortunately,

most data can not satisfy such severe restrictions. If the
data involves the non-sinusoidal part, the resulting
spectrum will be contaminated by the resulting Fourier
components which run over the whole spectrum domain
and is often referred as the Direct Current (DC)
contamination. Consequently, current spectrums of most
data strings are projections in weak sense. According to
numerical experiments, the weak projection leads to two
undesired imperfections: minor modes are seriously
faded and dominated modes are slight distorted.

In ref.[3-10], the iterative Gaussian smoothing is
employed to remove the non-sinusoidal part. Since the
iterative Gaussian smoothing has error around the two
ends, data segments around the two ends of the
remaining sinusoidal part should be dropped. A search
procedure and an interpolation method are employed to
locate zero values of sinusoidal part. The data string
beyond these zero points should be further dropped.
After employing the modified monotonic cubic
interpolation [1,12] to redistribute the sinusoidal data so
as to obtain data size to be integer power of 2, the odd
function mapping makes sure that all the periodic
conditions are satisfied. Since the cubic interpolation
procedure is employed and data segments are dropped
around the two ends, the resulting Fourier sine spectrum
will slightly deviate from the original sinusoidal part’s
spectrum. It is believed that the spectrum error is
approximately equal to the smallest possible level.
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2.3 Two Sharp and Diffusive Filters
2.3.1 The First Sharp filter [11]

2.3.1.1 The Linear Trend Removal

A convenient method to remove the non-sinusoidal
part is to assume the sinusoidal part taking zero values at
the two data ends. The non-sinusoidal part is just the
linear interpolation between the two end points and the
sinusoidal part is the result by subtracting the linear
interpolation from the original data. In general, this
approach does not work. However, it provides a simple
method to remove a large fraction of the non-sinusoidal
part. Therefore, the linear trend removal is employed to
first estimate the non-sinusoidal part. Since the zero
value points around the two ends of a data string is
generally not just the two ends, it is recommended to
estimate the possible zero value points.

2.3.1.2 The Sharp Filter Using the Linear Trend Removal
and Fourier Sine Spectrum Generator

The first sharp filter employs the linear trend
removal and Fourier sine spectrum generator. Its
procedure is listed below.

1. Properly choose two end points of the data string.
Drop data segments beyond the two points.

2. Use the linear trend removal so that the data string
has zero value at the two ends.

3. Use the Fourier sine spectrum generator to find the
spectrum.

4. Choose the desired cut-off frequency and perform
the inverse Fourier transform of the modes whose
frequency is smaller than the cut-of frequency. Add
this inversed data to the linear part removed by the
linear trend removal. The resulting data is the
smoothed part.

5. Find the Fourier sine spectrum of the remaining high
frequency part. Again, remove the modes whose
frequencies are small than the cut-off frequency.

6. The other sharp band-passed limited spectrum can
be directly obtained by embedding unit rectangular
window on the spectrum. The band-passed limited
data string is the corresponding inverse Fourier
transform.

2.3.2 The Second Sharp Filter

The required number of the iteration steps, m
becomes an incredibly large number for a narrow
transition zone. Note that, if the Fourier spectrum is
exact, the step function type filter imposing on the
spectrum gives a diffusive filtering response too. If the

data length is long enough to make sure that A < 0.1ty
the iterative filter can employ a relative wide transition
zone, for example, 4/4, =3, Egs.(7) gives m=~17
and o/A. =0.701712 . After cutting data segments
around the two ends whose lengths ~ 6o , the Fourier
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sine spectrum generator of previous sub-section gives a
spectrum with small error. Finally, the sharp and
diffusive filtering procedure with cutting frequency at
Ac gives the high-passed spectrum by eliminating all

modes of the spectrum whose A > A;. For the sake of

demonstrating the resulting error, the corresponding
results will not cut segments around the two ends.

The second sharp filter basing on the iterative
Gaussian smoothing is composed of the following
procedure:

1. Use an FFT algorithm to estimate the Fourier
spectrum of a data string.

2. Determine the cut-off frequency corresponding to
e and A .

3. Find the corresponding smooth factor
iteration step m by solving Egs.(7).

4. Perform the iterative filter basing on the iterative
Gaussian smoothing to obtain the estimated
smoothed and high frequency part.

5. Find the Fourier sine spectrum of the estimated high
frequency part.

6. Remove all the modes whose 4> 4. and find the

resulting high frequency part. The difference
between the original data and this high frequency
part is the smooth part.

7. The other sharp band-passed limited spectrum can
be directly obtained by embedding unit block
window on the spectrum. The band-passed limited
data string is the corresponding inverse Fourier
transform.

o and

2.4 A New Spectrogram Generator [7,8]

A previous study showed that both the Morlet and
Gabor transforms impose a Gaussian window on time
domain and cause a corresponding Gaussian window on
the spectrum. Since the Fourier sine spectrum generator
gives an accurate spectrum. it was proposed to direct
impose a window on the spectrum domain. If a Gaussian
window is employed, the corresponding inverse FFT will
give
Yie(®) = ZN30y — o )e 277/ e (0-TIE) (g
where the center frequency of the window is located at

fi =k /ty . After scanning all the desired frequency, the

corresponding spectrogram can be obtained.
3. Results and Discussions
The following composite wave is employed to

examine the error of the smooth part generated by two
sharp filters, respectively.
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yi =1+0.2t; +0.025t,2 +1.3e %" sin(0.6xt;)
+0.8sin(10zt;) +0.7sin(5.67t;) ©)

2
+0.3(1+0.2t; +0.01t;2)e %99 sin(3.27t;)

Xj =IAX+d

where the first line of the equation represents the
non-sinusoidal and low frequency parts and the second
and third lines are the high frequency part. The parameter
d =0 for the case of sinusoidal part takes a zero value
at the two ends, and d =z /4 for non-zero end case.

Figure 1 is the result of the first sharp filter with
d=0 in Eq.(9) where the cut-off frequency is set at
f =1Hz. The figure shows that the simple method
works very well, the largest error is approximately equal
to 1073. By taking A, =0.625 (i.e. f=16Hz )

and )T//lc =4, the smooth result of employing the

second sharp filter has the error distribution shown in
Fig.2. By decreasing the error level of iteration to be
6 =0.0001, the error distribution in the interior regions
where 3 <t <7 is approximately equal the that shown in
Fig.1. However, around the two ends, the error of Fig.2
is obviously larger than that shown in Fig.1 because of
the error introduced by the iterative Gaussian smoothing.
As a first conclusion for the case where the high
frequency part takes a zero value at the two ends, it
seems that the performance of the first sharp filter is
better than that of the second sharp filter.

For the test case with d =x/4, where the high
frequency part is not zero, the result of the first sharp
filter without dropping data around the two ends is
shown in Fig.3. The resulting error distribution is much
worse than that shown in Fig.1. The reason is that the
estimation of the linear trend removal is not good around
the two ends. As a consequence, the estimated smooth
part is seriously deviated from the original smoothed part.
Figure 4 shows the error response of dropping segments
of length 90Ax =90/8192 at the two ends. Although the
error around the two ends is smaller than that shown in
Fig.3, the error of this figure becomes slight worse than
that of Fig.3 in the interior points remote from two ends.
The error response shown in Fig.5 drops 94 points at the
left end and 127 points at the right end is better than that
shown in Fig.3 and 4, respectively. Now the end values
are Yygy =0.03708 and ygggs =—0.005104 which is

closer to zero value than that of Fig.3 and Fig.4,
respectively. If the dropping points is properly chosen so
that yosg =1.5495x10~* and Y6808 =-1.4119x107°,

the error response is shown in Fig.6 which is smaller
than that of Fig.5 but is still worse than that of Fig.2.

If the second sharp filter is employed, its error
distribution is shown in Fig.7 which has not much
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different from that of Fig.2. Again, error propagation
range increases as the iteration number increases (and
hence error level decreases). The error responses of those
cases of dropping data around the two ends are all
similar to that shown in Figs.2 and 7 (except that the
accurate range is shrunk) so that they are not shown here.

The above discussions show that the first sharp
filter can be an effective filter with small error only if the
high frequency part has an almost zero value around the

two ends. Otherwise, its performance is not good enough.

On the other hand, the second sharp filter is not good
enough around the two ends. It can achieve a small error
result if the data length is long enough. Therefore, it is
concluded that: it is recommended to employ the second
sharp filter employing the iterative Gaussian smoothing.

The raw data shown as the thin line in Fig.8 is the
u -velocity data measured at the near wake region of a
low speed turbulent flow over a bluff body [13]. The
measured point is at a distance of 0.5D from the base of
the bluff body, where D is the width of the bluff body.
The FFT algorithm is shown in Fig.9a (where the high
frequency part is obtained by employing the iterative
Gaussian smoothing with parameter o =3m=126

which is corresponding to A~ 2.3145 seconds). By
consider A, =1/3second and A/, =3, the iterative
Gaussian smoothing with the parameter of o =0.2239,

m =17 gives the smooth part shown as heavy solid line
in Fig.8. With the cut-off frequency of 3Hz, the second
sharp filter let the resulting high frequency part to have a
spectrum shown in Fig.9b. Finally, the new spectrogram
generator gives the amplitude and real parts shown in
Fig.I0, respectively. From these spectrogram, the
mode-mode interaction can be precisely extracted.

4. Conclusions
Two simple and fast sharp filters are compared. The
numerical tests show that the sharp filter employing the
iterative Gaussian filter can generate high accurate
smooth part than that of the other sharp filter using the
linear trend removal.
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thin solid : eriginal smeethed part (y = 0 at2 end)

[ dashed : estimated smoothed part
by FFT + linear trend ermeoval
heavy solid: log, (error) of smoothed part
Fa
3
1 1 1 1 ]
0 2 1 & 8 10

Fig.1 The original and estimated smooth parts (top) and
error of the estimation (bottom, inlog,q scale), the

sinusoidal part has a zero value at the two ends,
estimated by the first sharp filter.

Leg10{error)

thin solid : original smoothed part (y = 0 at2 end)

dotted dashed
Iterative Gaussian smoothing (

heavy solid : Iog1 (error) of smocthed part

dashed solid ~'°

dotted line

: estimated smoothed part

Laclaiar]
oo
A Cooun

Fig.2 The original and estimated smooth parts (top) and
error of the estimation (bottom, inlog,q scale), the

sinusoidal part has a zero value at the two ends,
estimated by the second sharp filter.

Lo g10-error

Lineartrend removal + FFT filter

= cut-off points 0 -0

heawy dashed : original smoothed part
heawy solid : estimated smoothed part
thin selid : Log . (error)

Fig.3 The original and estimated smooth parts (top) and
error of the estimation (bottom, inlog,q scale), the

sinusoidal part does not have a zero value at the
two ends, estimated by the first sharp filter.
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Lineartrend removal + FFT filter
cut-off points 90 - 20

heawy dashed : original smeothed part
heawy solid : estimated smoothed part
thin solid : Log ,,(error)

-

Log10-error

] 10
t

Fig.4 The original and estimated smooth parts (top) and
error of the estimation (bottom, in logq scale),
discarding 90 points around the two ends but the
sinusoidal part does not have a zero value at the
two ends, estimated by the first sharp filter.

Log10-error

Lineartrend removal + FFT filter
cut-off points 94 - 127

heawy dashed : eriginal smoothed part
heawy solid : estimated smocthed part
thin solid : Log , (error)

10
t

Fig.5 The original and estimated smooth parts (top) and
error of the estimation (bottom, in logq scale),

discarding 94 points at the left end and 127 points
at the right end, estimated by the first sharp filter.

Lo g10-error

Lineartrend removal + FFT filter
cut-off points 256 - 1384

heavy dashed : original smoothed part
heavy solid : estimated smoothed part
thin solid : Log ,(error)

Fig.6 The original and estimated smooth parts (top) and
error of the estimation (bottom, in logq scale),

dropping 256 points at the left end and 1384 points
at the right end, estimated by the first sharp filter.
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* = 0.625, iterative Gaussian
top lines : solid = original smooth
long dashed = estimated smooth part

bottom lines = log,, ermor lines
dotted : emor of &= 0.01 a'fy = 0.5502, m=4
solid :errorof &= 0.001 oA =06757, m=8
heawvy solid errord = 0.0001 oA =0.7753, m=14
I!eav!“dm error 5= 0.000015/%) = 0.8608, m= 22

1

Logi0-error

E3 S

PRI KPR N1 A

0 2 4 3 8 10
t

Fig.7 The original and estimated smooth parts (top) and
error of the estimation (bottom, inlog,q scale), the

sinusoidal part has a non-zero value at the two

ends, estimated by the second sharp filter.

thin: original data of case ai-1
solid : smoothed part with sigma = 0.701712/3
iteration no. = 17

b

RN T TN T T T T S T T S T [N N T S T S |
4 [ 8 10
timea

Fig.8 Original and smooth part data (with o =0.7017,

m= 17).
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High pass-filter
cut-off freq. = 3 Hz

Hz

Fig.9 (a) the original spectrum (top); and (b) and

Fig.10 The amplitude and real part plots of the

spectrum of high-pass filtered data (bottom) with
cut-off freq. = 3 Hz.
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