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Time varying velocity data measured at the wake region of a low speed flow over a 
bluff body are shown to have the turbulent characteristics via the Hurst analysis. By using a 
diffusive iterative filter, these data are decomposed into smooth and high frequency parts, 
respectively. Spectrums with small errors of these high frequency parts are subsequently 
evaluated. Gaussian window centered at a given frequency is employed to weigh a spectrum 
and hence the corresponding band-pass limited data is obtained. The enhanced Morlet 
transform uses these band-pass limited data instead of employing the original data. The 
resulting two-dimensional wavelet coefficient plot clearly shows many detailed information 
and overall features of the flow field: such as the frequency shift of a waveform, the merging 
between waveforms with their frequencies close to each other, how a waveform starts and 
terminates, etc. The modified Hilbert transform is employed to calculate amplitudes and 
frequencies of the shedding frequency and several sub-harmonic waveforms. A quantitative 
study of these waveforms shows some information of the energy cascade between them such 
that, in the wake region, the shedding frequency waveform releases energy to other 
waveforms and the flow field contains the low frequency modulation. 

−u

Nomenclature 
A = attenuation factor of iterative filter, amplitude 
a = attenuation factor, scale function of the Morlet transform 
B = constant 
b = Fourier coefficient 
c = Fourier coefficient, Hermite interpolation coefficients, and window size factor 
d = second order derivative 
f = frequency 
H = Hurst exponent 
i = time or spatial index 
J = modified Hilbert transform of x  
k = constant, mode number 
m = iteration number 
N               = data number 
n               = mode index 
L               = mode index 
p               = high order slope 
R               = departure estimation 
S               = sample deviation 
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s               = slope, first order derivative 
T               = sampling range 
t                = time, second order derivative 

0U  = mean velocity at inlet of the wind tunnel 
u = velocity 
W = wavelet coefficient 
x = data 
X = rescaled time span 
y = data 
z = complex data 

tΔ             =    time interval 
ξ               =   data 
λ               =   wavelength 
σ              =   factor of Gaussian function 
θ               =   phase angle 
τ               =   time 

I. Introduction 
         After the work about the low frequency unsteadiness of Bloor [1], many studies on the low-frequency 
variations embedded in the vortex shedding process have been followed. Miau et al. [2-4] had preformed extensive 
studies upon the detailed structures and mechanisms of the vortex shedding at a low Reynolds number. In Ref.[5-10], 
Miau et al. studied the low frequency modulation for flows over different configurations of bluff bodies in different 
ranges of the Reynolds numbers. In these studies, both the Morlet transform [8-10] and empirical mode 
decomposition method [7] were successfully employed. 

In order to study the complicated flow field in the wake region, Ref.[7] employed the empirical mode 
decomposition method and got many valuable insights. Since the method of the empirical mode decomposition is 
principally based on an average between the upper and lower envelopes of a data string, it cannot arbitrarily control 
the frequency bandwidth of a waveform. As a consequence, the extracted turbulent characteristics do not contain 
many detailed information [7]. In Ref.[15-16], the Morlet transform is enhanced by introducing a band-pass limited 
data for every scale function of the transform and using a diffusive iterative filter [17-20]. The band-pass limited 
data are obtained via a simple strategy of employing a Fast Fourier Transform (FFT) [21] together with the diffusive 
iterative filter. As compared with the result of the original method, a clearer picture of the time-frequency feature is 
gotten [15-16]. In order to examine the energy flow in and flow out of a waveform, the modified Hilbert transform 
[13, 14, 22, 23] will be employed in this study to find the amplitude and frequency of a band-pass limited data string 
correctly. 

In early days, people recognized that a turbulent flow is related to the random processes [24,25]. One of these 
studies is the Hurst analysis [26]. In 1962, Lamperti [27] proved the self-similar theorem of a random process. Later 
Mandelbrot [28] pointed that the self-similar property can be properly interpreted by the fractal analysis such that 
the Hurst analysis can be employed to identify a random process. This study will employed the Hurst analysis to 
make sure that the flow field studied in Ref.[4-6] is turbulent. 

II. Analysis  
 

Hurst Analysis [26] 
 

Assume that a time series data string Nitii ,...,1,0),( =Δ= ξξ  is known. The average of the rescaled time-
span, τξ  , where tNΔ≤<τ0 , is defined as  

∑
=

=
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ξ τ                                                                                                                                                           (1) 

The accumulated departure of the rescaled time-span ),'( τtX , where τ≤'t , is defined as follows. 

 
American Institute of Aeronautics and Astronautics 

 

2



(∑
=

−=
τ

τξξτ
1

),'(
j

jtX )                                                                                                                                        (2) 

Subsequently, the departure estimation )(τR  and sample deviation )(τS  are defined in the following equations, 
respectively.  
 [ ] [ ),'(min),'(max)( ]τττ tXtXR −=                                                                                                                        (3) 
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The normalized departure is defined as . Hurst pointed that the exponent SR / H  in the following relation is related 
to the random process.  

( )HkSR τ∗=/                                                                                                                                                  (5) 
where  is a constant. Ifk 1=H , the data string is smooth and carries a deterministic behavior. The random nature is 
more and more obvious as H  becomes smaller and smaller. There are three different values of the Hurst exponent 
which are corresponding to three kinds of system status in the region of 10 << H , respectively.  
1. The case of means that the experimental system appears in a random tendency and stays in the state of 

a classic Brownian motion.  
5.0=H

2. When , it indicates that the system is a fractional Brownian motion and appears an anti-persistent status.  5.0<H
3. When , it means that the system has a high fractional Brownian motion and appears a persistent 

status which may or may not be properly predicted. It also means that the time series system partially repeats 
itself rather than in a fully random procedure. Since a turbulent flow is not a fully random process, it belongs to 
this category. 

5.01 >> H

Data of these three systems are referred to as the white, pink, and black noises, respectively. 
 
The Iterative Filter Based on Gaussian Smoothing 
 
        Assume that a discrete data string can be approximated by 
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where nTtotaln /=λ . In Ref.[17-20], it was proven that, after applying Gaussian smoothing method once, the 
resulting smoothed data becomes 
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where )/( na λσ is the attenuation factor introduced by the smoothing procedure. It can be proven numerically that 

1]2exp[)/(0 222 ≤−≈≤ nna λσπλσ                                                                                                                   (8) 
If the high frequency part is repeatedly smoothed by Gaussian smoothing method, the result at the th step is −m
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where and '
my my  are the high frequency and smoothed parts at the −m th smoothing step, respectively. Finally, 

)(my  is the desired smooth part and  is the high frequency part. Obviously, both the original Gaussian 
smoothing and iterative smoothing algorithms are diffusive. 

'
my

 
Suppose that all the waveforms within the range of 21 cc λλλ <<  are insignificantly small. By using 

)(5.0 21 cc λλ + as a cutting point, the above mentioned iterative smoothing procedure is an effective filter to give both 
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the low and high frequency parts [17-20] without introducing any dispersive error. The desired parameter σ  and 
number of iteration steps  are solved by the following simultaneous equations.  m
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where , respectively, are employed in this study. 999.0,001.0, 21 =BB
 
Fourier Spectrum with Small Error 
 
         In general, if a Fast Fourier Transform algorithm (FFT) is employed to evaluate the spectrum of a data string 
consisting of a non-sinusoidal part, the resulting spectrum always shows an exponentially decayed trend. The 
contribution of the non-sinusoidal part is referred to as the Direct Current (DC) contamination. Consequently, many 
quantities of the sinusoidal features in the low frequency regime can not be clearly identified. The non-periodic 
condition introduces a negative contribution, too. In Ref.[21], the cubic moving least squares method was employed 
to remove the non-sinusoidal part and developed a strategy to further remove the effect of the non-periodic condition. 
Since the transition zone, ),( 21 cc λλ , of the cubic moving least squares method is still too wide, the above iterative 
filter was employed to remove it and the low frequency part in Ref.[17-20]. Subsequently, a spectrum with small 
spectrum error can be evaluated via the following procedures. 
 
1. For the remaining high frequency part, choose zero crossing points around the two ends. Use an interpolation   

method to find the corresponding locations of these 0s. Since the iterative filter can not approximate data very 
well at the two ends, it is recommended to discard several zeros around the two ends as will be shown in the 
discussion section. 

2. Use the following modified monotonic cubic interpolation [21,29] to redistribute the data, say, 
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and the total number of points is set to be . For a smooth data string, at least one point should be located in 
the range between two successive data points of the original data string to reduce the interpolation error. For an 
oscillatory data such as the turbulent data taken by an insufficient sampling rate, more than 4 points should be 
considered. 

m2

3.  Perform an odd function mapping with respect to one end so that the range of the final data is doubled. 
4.  A simple FFT is employed to generate the desired spectrum. 
 
The odd function mapping makes sure that the periodicity is valid up to the highest order of derivative such that the 
data can resolve. Consequently, the spectrum error can be effectively reduced. In fact, this transform gives a Fourier 
sine spectrum. 
 
Enhanced Morlet Transform 
 

  For a given data string, the Morlet transform evaluates the wavelet coefficient by the formula [11,12,22]. 

dteety
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where  is called the scale function of the transform. Basically, it transforms a one-dimensional data string into the 
two-dimensional 

a
),( τa  plane where  is related to the wavelength or frequency and a τ  represents the time scale. If 

the original data is expressed in the form of Eq.(6), the resulting wavelet coefficient is approximated by the 
following formulas. 
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Obviously, for a given scale function , the maximum response occurs at a 3//1 πλ af ≈= . A careful inspection of 
Eqs.(12) and (13) reveals that Gaussian window of the Morlet transform on the time domain results in a band-pass 
limited spectrum characterized by a corresponding Gaussian window. Moreover, the band-width of the resulting 
spectrum introduced by Gaussian window is too wide so that the visibility of the resulting wavelet coefficient plot 
generated by this continuous wavelet transform is not good enough [11,12]. 
 
        With the help of the iterative filter, the FFT algorithm of Ref.[21] is employed to give the band-pass limited 
data via the following steps. At first, the iterative filter is employed to remove the non-sinusoidal and low frequency 
parts. Then, the above mentioned FFT algorithm is used to evaluate the spectrum of the high frequency part with a 
small error. For a given scale function , a band-pass limited spectrum is obtained by weighting the spectrum by 
Gaussian function whose center locates at

a
3/πλ aL = . A typical example is shown in Fig.1. After the band-pass 

limited spectrum is obtained, the inverse FFT algorithm is employed to give the following band-pass limited data 
string for the scale function a .  
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where the superscript H  designates the high frequency part. This data string is referred to as the −L th wave mode 
corresponding to the frequency LLf λ/1= . In Eq.(14), Lσ is the window size of Gaussian function on spectrum 
domain and is determined by the relation 

|]||,max[| 11 LLLLL kkkkc −−⋅= +−σ                                                                                                                (15) 
where LL Tk λ/total=  and is an user defined parameter of window size. Finally, instead of using the original , 

 is employed in Eq.(12) to evaluate the wavelet coefficients so that an enhanced version of the Morlet 
transform is obtained. It can be proven that the resulting wavelet transform converts the high frequency part of the 
original data string to be 
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Without the extra-window term, the remaining factor  can not be ignored over a certain band of 
spectrum. 

]2/)(exp[ 2 ⋅−a

 
Modified Hilbert Transform 
 
        For a data string , defined in the range of)(tx ∞<<−∞ t , the following Hilbert transform is the corresponding 
imaginary part provided that  is sinusoidal.  )(tx
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Then the amplitude and frequency can be evaluated directly as follows. 
    )()()(~)()( tietAtxitxtz θ=+=                                                                                                                               (18)  
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txt oπθ 2]
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)(~

[tan)( 1 == −  

This transform is frequently evaluated with the help of the FFT [22]. However, the convolution integration via the 
Fourier spectrum always carries a certain error induced by overlapping or end effect. In order to remove the overlap, 
both  and  of Eq.(17) should be properly fed by the 0s before their Fourier spectrums are evaluated [30]. 
Because the spectrum of the function  (with properly fed 0s) is unavailable now, the calculation is performed on 
the time domain to remove the end effect. 

)(tx t/1
t/1

 
It was proven in Ref.[23] that, for a data string with a finite range, the Hilbert transform evaluated on the time 

domain has significantly large error around the two ends of the data string. Moreover, the error deeply penetrates 
into the interior region. To reduce the penetration effect, the original Hilbert transform is embedded by Gaussian 
kernel in the form of [23] 

  ∫ ⋅−
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= 2
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For a data string of infinite domain, where −∞→1t  and ∞→2t ,  is approximately equal to the Hilbert 

transform 

)]([ txJ

)(~ tx  with an infinitesimal error whenever σπ f2 >4. Numerical experiments show that, if the following 
conditions subject to σ  are satisfied,  is almost equal to)]([ txJ )(~ tx and the error penetration distance of the former 
is much shorter than that of the latter. 

minλσ > , πλσ 2/4 max>                                                                                                                                     (20),  
where minλ  and maxλ  are the shortest and longest wavelength of the sinusoidal function . Whenever the first 
criterion is violated, for a discrete data string with finite and , an oscillatory frequency distribution is found 
around locations where the local wavelength 

)(tx

1t 2t

minλ≈ . The reason is that the convolution integration should 
accumulate enough information (from those points where the magnitude of Gaussian kernel function is of order one) 
to reflect the exact information. In Ref.[23], it is also shown that the error penetration distance of  becomes 
shorter for a smaller 

)]([ txJ
σ . Since the original and modified Hilbert transforms are valid only for a sinusoidal data string, 

it is easy to extrapolate the data beyond the two ends. Consequently, the error becomes insignificant in the desired 
data range as will be shown later [23]. 

III. Results and Discussions 
 

    For the sake of completeness, two examples are employed to show the performance of the Fourier spectrum 
with small error and modified Hilbert transform, respectively. The first example uses the following function. 

,2047,...,2,1,0,,400/1,10/,100
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In order to preserve the periodic condition, the point at 104000 =t  (with )10()0( xx = ) is dropped. The original data 
is shown as the upper thin solid line in Fig.2, the non-sinusoidal part is shown as the upper heavy solid line, and the 
high frequency part is shown as the heavy solid line around horizontal axis. Since the original non-sinusoidal part is 
generally not known, it is estimated by the iterative filter with 1=σ  and 30=m (shown as the heavy dashed line). It 
is found that the estimated and given non-sinusoidal parts are obviously different from each other at the two end. In 
the interior region, their difference is small as shown. The thin dotted line around the horizontal axis shown in Fig.2 
is the estimated high frequency part by dropping corresponding segments of data around the two ends. 
 
       If the original data is directly employed to find the spectrum via an FFT program, the resulting spectrum is 
shown as the long dashed line in Fig.3. In the figure, the exact spectrum (shown as the heavy solid line) is evaluated 
by the original high frequency part composed of all the sine functions. It uses 4000 uniform spacing points to 
resolve  together with the odd function mapping. The spectrum evaluated by the original data has a large 
and exponentially decayed error because of the presence of the non-sinusoidal part and non-periodic condition. The 
error does contaminate the spectrum of the low frequency part such that the mode of 

10total =Δt

)16sin( itπ is misled. Moreover, 
even if a mode’s frequency can be identified, its amplitude is not known. Consequently, except the frequency 
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estimation, most spectrums are termed as qualitative outputs. If the estimated high frequency part is employed to 
find the spectrum, the result contains a much smaller spectrum error than that of the thin dash line and is not shown 
here due to length limitation. The short dashed line of Fig.3 is the spectrum of the thin dotted line of Fig.2 which 
drops data around the two ends. Now the error of the estimated spectrum is small with the penalty of shrinking data 
length. The test case shows that, for a long enough data string, the simple strategy of Ref.[15,16,21] does produce a 
reasonable spectrum. 
 
       The second test case employs the following single sine function to examine the difference between resulting 
amplitude and frequency estimation via the original and modified Hilbert transforms. 

10),4sin()( total
total

== x
x

xxy π                                                                                                                         (22) 

In Figs.4 and 5, the estimated amplitudes and frequencies via the original and modified Hilbert transforms are shown, 
respectively. As compared with the known amplitude and frequency, both methods can not give perfect results 
around the two ends where  and 10, respectively. The error penetrating distance introduced by the modified 
Hilbert transform is much shorter than that of the original transform. If the data is extrapolated at the two ends for 
600 points, the resulting frequency estimation is shown in Fig.6. Obviously, the error penetration regions at the two 
ends of the modified version are effectively suppressed to a reasonable level (the maximum error at the two ends is 

 and decays to within  in the region of 

0=x

%102.0± %0045.0± 91 << x ), while that evaluated by the original Hilbert 
transform can not achieve the same accuracy. 
 
        Finally, the experimental data of Ref.[4-6] is employed to demonstrate the enhanced wavelet transform. Ten set 
of the u -velocity data were taken from to  at the 7 downstream locations along the centerline of the 
blunt body’s wake region as shown in Fig.7, respectively, where

dx 5.0= d10
mm32=d is the bluff body’s width and 

=16500 is employed. The free stream turbulence is less than 1%, the non-uniformity of the inflow stream 
except the boundary layer is within 0.5% error and the blockage ratio of the blunt body in the test section is about 
21%. The positive and negative velocities are obtained by employing a dual split-fiber probe (Dantec model 55R55). 
Those locations in the range of 

dRe

dx 5.15.0 −=  are within the near wake region, the location of =x d2 is 
approximately at the end of the near wake region, while that of ddx 103 −=  are at the down stream side of the near 
wake region. The sampling rate is 500 points per second and the total measuring time interval is 10 seconds. It 
means that the minimum and maximum frequency resolutions are 0.2 and 250Hz, respectively. Those shown in 
Table-1 are values of the Hurst exponents corresponding to all the experimental data. All the exponents are in the 
range from 0.6405 to 0.7229 with small variances that are within the range of 15.0 << H  and close to 0.5. From the 
classification of the Hurst analysis, the fluctuation in the flow field is random and belongs to a black noise process. 
It might repeat itself randomly after some intermediate procedures which first decays and then increases and/or vice 
versa. Therefore, the wake flow field is a low speed turbulent flow. 
 
       The iterative filter was employed to obtain the smooth and high frequency parts which are denoted as u and , 
respectively. Figure 8 shows a typical data string’s high frequency and smooth parts of point A. The corresponding 
Fourier spectrum evaluated by the present FFT algorithm is shown in Fig.9. Clearly, if the smooth part is not 
removed, the spectrum will involve a DC contamination. In order to examine the overall flow properties, mean 
values of and are calculated, respectively, as 
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where 10 seconds and = 6m/s is the inlet velocity. The resulting distributions are shown in Fig.10. This 
figure shows that the near wake region is approximately ended at 

=T 0U
dx 2= where the mean velocity u  is obviously 

recovered from almost zero velocity to a value of 0.62 . Meanwhile, the mean velocity fluctuation 0U 'u suddenly 
drops to the level of the downstream wake region. 
 

In order to show the detailed information of the flow field, three typical wavelet coefficient plots corresponding 
to cases at points A, D, and F of Fig.7, respectively, are discussed. These locations are near the base of the bluff 
body, at downstream side of the near wake region, and at the far downstream wake region, respectively. If the 
original Morlet transform is employed, the resulting amplitude plot of point A is shown in Fig.11. The figure shows 
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that the temporary resolution is very good but the frequency resolution is poor so that the detailed information about 
mode interaction can not be extracted extensively. 

 
The corresponding wavelet coefficient plot of point A evaluated by the enhanced Morlet transform is shown in 

Fig.12 with the window parameter . The original data string and plots of estimated amplitude and real parts are 
involved in the same figure, respectively. It seems that this is the first time that one can look into details of the 
waveform information of a turbulent data string. For the sake of convenience, a ridge line on the amplitude plot is 
considered as a waveform. Since this is a first study upon this issue, only the case of c =1 is considered to examine 
the frequency shift among waveforms. A careful inspection of Fig.12 reveals the followings. 

1=c

 
1. At some specific instants of constant, there are many waveforms with slightly different wavelengths merged 

together to form another waveform. There are also waveforms split into several waveforms. These phenomena 
reflect the energy transform between waveforms whose corresponding frequencies close to each other.  

=t

2. Every waveform can not persist indefinitely. It may terminate itself or change the frequency which indicates the 
energy transform between waveforms. 

3. The behavior of the frequency shift is seen for several waveforms. These shifts also reflect the energy changes 
between waveforms with different and nearby frequencies. 

4. Every waveform shown in the wavelet coefficient plot represents a stream with certain velocity fluctuations 
passing through the region around a measured point. A fluctuation of a waveform may be induced by many finite 
fluid segments involving a series of small eddies (and hence vortices street in an irregular shape). Moreover, the 
starting and termination of a waveform reflects the approach and leaving of a specific frequency band’s 
information of a series of eddies, a vortex filament, or a non-uniform and oscillatory flow pocket with variable 
degree of vorticity, …, etc., with respect to point A. As a consequence, the time-frequency plot shows that the 
flow structure around the measured point is very complicated and changes rapidly. 

 
Those shown in Figs.13 and 14 are similar plots of that measured at points D and F with c =1, respectively. 

Many important features are similar to those shown in Fig.12. The main differences are that the waveform of 
shedding frequency becomes a clear band at the immediate downstream point of the near wake region (see Fig.13) 
and decays at the down stream location (see Fig.14). 
 
        One can extract many information from the wavelet coefficient plot of Fig.12 (and hence Figs.13 and 14). In 
fact, a waveform with a given window size of c  is composed of several Fourier modes of Eq.(6) and is similar to a 
beat wave whose upper and lower envelopes are reflected by the variation of the amplitude of the waveform. For 
example, from Fig.12, by tracing the amplitude value along a ridge line, variations of amplitude and frequency are 
obvious. For the sake of simplicity, several measurements along lines parallel to the time and frequency axes will be 
separately performed. At first, every constant line is employed to approximate a waveform. The distance 
between two successive amplitude peaks of this approximated waveform is considered as the group or envelope 
wavelength of the waveform. The mean ratio of the envelope wavelength to

=a

)3/( πλ a=  is estimated by 
[ )/(30 aπ ]/(no. of peaks) and is a rough measure of the waveform’s variation. The corresponding plot of peak 
numbers and mean ratios are shown in Fig.15. In the high frequency zone, a waveform has a mean envelope 
wavelength in the order of a fewλ s. In the long wave zone corresponding to ≥λ  0.035 seconds, a waveform has a 
mean envelope wavelength longer than 10λ . This means that the main source of the flow randomness comes from 
the high frequency part which is in the zone including the shedding frequency. In other words, the figure reflects that 
the high frequency waveforms dominate the energy change of the flow field. 
 

The second measure in the frequency direction is to calculate the approximate waveform number at an instance 
of time such that one waveform number is counted once a local maximum and minimum pair is found along the 
vertical direction of Fig.12. The resulting plot is shown in Fig.16. For the sake of convenience, a waveform with 

 is referred to as an energy pumping-out waveform while that with  is considered as an energy 
pumping-in waveform. The figure shows that the number of the energy pumping-in waveforms is approximately 
equal to that of the energy pumping-out waveforms. Around the two ends where  and 10 seconds, the 
significant number difference between the energy pumping-in and pumping-out waveforms is introduced by the 
periodic boundary condition of the band-pass limited data string. 

0/ <dtdr 0/ ≥dtdr

0≈t

 

 
American Institute of Aeronautics and Astronautics 

 

8



Figure 17 shows the estimation of the mean pumping-in and pumping-out energies. The total pumping-in 
energy is estimated by summing up all r  values (with ) between two successive s along the vertical 
direction of a given t . The mean value is then estimated by the ratio of this sum to the pumping-in waveform 
number. The mean pumping-out energy is estimated in a similar way. In order to exclude the error around 

0/ >dtdr minr

=t 0 and 
10 seconds, the result is shown in the range of 91 << t  only. Note that, during the range of seconds, there 
is an obvious turbulent intermittency of the original data (see Fig.12). Although the corresponding number of the 
energy pumping-in waveforms before the intermittency is larger than that of the pumping-out waveforms (as shown 
in Fig.16), the estimated mean  pumping-in energy is less than that of the pumping-out (see Fig.17). Nevertheless, 
both energy measurements decrease up to the point of intermittency. The amplitude plot (an energy measure) of 
Fig.12 shows that the magnitude of most high frequency waveforms decreases rapidly too. After the intermittency, 
the mean pumping-in energy rapidly rises and is larger than the mean pumping-out energy. Figure 16 shows that the 
number difference between the energy pumping-in and pumping-out waveforms reduces during this period. For 
other cases of point A not shown here, all the intermittencies have a similar tendency. The number difference 
between the energy pumping-in and pumping-out waveforms around the turbulent intermittency might be due to the 
time-frequency transform whose detailed mechanism is not known yet. 

43 << t

 
Starting from an instance on an constant line, one might find the nearest  in the upward direction and 

another nearest  in the downward direction or vice versa. The normalized bandwidth is defined as the difference 
of frequencies corresponding to these two s divided by 

=a maxr

maxr

maxr )/(3 πaf = . From these normalized bandwidths along 
the whole constant line, the normalized mean, upper and lower limits of the frequency bandwidth corresponding 
to the frequency are estimated and are shown in Fig.18, respectively. The figure shows that the high frequency 
waveforms with Hz have a lower limit value of the normalized frequency bandwidth ranged from 10 to 25%. 
For the long waveforms with Hz, the value reduces to be less than 5%. It seems that a low frequency 
waveform frequently shifts its frequency gradually or merges with other waveforms whose frequencies close to it. 
On the other hand, for the high frequency waveforms, the possibility of the frequency shift and merging between 
waveforms with frequencies close to each other is relatively low. The mean and upper bandwidth limits reflect these 
discussions too. Therefore, a high frequency waveform has a larger fraction of the energy transform between 
waveforms with significant frequency differences than that of a low frequency waveform. This fact can also be 
verified by the departure between the upper and lower limits which indicates the range of frequency variation of a 
waveform. 

=a
f

20>f
10<f

 
Figure19 shows the real part plot corresponding to that of Fig.12 with a window size parameter value of 2=c . 

A comparison between Figs.12 and 19 reflects the effect of changing the window size upon the wavelet coefficient 
plot. Since the waveform amplitude shown in Fig.19 is a weighted summation of several waveforms of Fig.12, the 
resulting waveforms of the former have larger bandwidths than those of the latter. Moreover, the waveform variation 
in the temporal direction shown in Fig.19 becomes more rapidly than that in Fig.12. Consequently, features of both 
figures are different from each other to a certain degree. These differences can be explained by comparing Figs.20a 
and 20b in which the corresponding detailed plots of the high frequency part are shown, respectively. For example, 
around the point where (4.5, 0.048), Fig.20a shows an in-phase distribution in the vertical direction. On the 
other hand, around the point (5.8, 0.038), it shows an out-of-phase distribution in the vertical direction. After the 
weighted summing up procedure which gives Fig.20b, the in-phase region shows an increase of amplitude while the 
out-of-phase region shows a decrease of amplitude. Similar increase-decrease behaviors of the waveform amplitude 
can be found in many regions of Figs.20. Consequently, the increase of c  improves the temporal resolution but 
deteriorates the frequency resolution. 

=),( at

 
Figures 21 through 23 show the number of peaks along =a constant lines, waveform number along 

constant lines, and mean normalized frequency bandwidth of waveforms, respectively, for different window 
sizes, say and 2.5, etc.. Figure.21 shows that the estimated number of peaks is almost constant with 
respect to the frequency in the long wave part and linearly increases in the short wave part. The increase of window 
size increases the number of peaks but is saturated after  especially at the low and high frequency side (less 
than 10Hz and greater than 72 Hz) because of the limitation of sample length and sampling rate, respectively. In 
Fig.22, the waveform number decreases as c  increases, but the waveform number using  closes to that 

=t
2,5.1,1=c

2≥c

2=c
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using . The mean normalized bandwidth plot of Fig.23 shows the same tendency of increasing 5.2=c fΔ  with 
respect to c  as that of Fig.21. These three figures again show the trend that increases the window size c  increases 
the temporary resolution and deteriorates the frequency resolution of the wavelet coefficient plot. Eventually, as c  
is large enough, the present frequency window effect disappears and the resulting wavelet coefficient plot 
approaches to that generated by the Morlet transform (see Fig.11). On the other hand, if a very small value of c  is 
employed, the mechanism of capturing the amplitude and frequency variations of a waveform disappears and the 
resulting wavelet coefficient plot approaches to the corresponding Fourier spectrum of the high frequency data. 
These two limiting situations are introduced by the well known uncertainty principle of a time-frequency transform 
[11,12,22]. 
 

The above discussions show that different window sizes give different wavelet plots and hence different 
physical insights. These differences might be corresponding to different length and time scales. It is suspected that: a 
resulting waveform of using a smaller value of c  will properly interact with a solid component with a smaller size 
or a smaller stiffness while a waveform of using a larger value of c  interacts with a larger or a more stiffen 
component. Since the available experimental data only gives the u  velocities at isolated measuring data, it is 
impossible to give more information from the view point of conservations of the mass, momentum and energy.  
Nevertheless, the present study indicates the necessity of organizing proper experiments to look into details of a 
turbulent flow field. 
 
        Equations (13) and (16) show that, along a single =a  constant line, the integration procedure of the wavelet 
plot accumulates information over a region on the time-frequency plane. The integration introduces a re-
arrangement of the original data string that deteriorates both the spectral and temporary resolutions. In order to 
precisely look into the temporal behavior of a single waveform, the modified Hilbert transform is employed. For the 
sake of convenience, a rectangular band-pass limited filter is employed to define a waveform. For example, a 
waveform involving the 72 Hz mode (the shedding frequency mode) using a 0.3Hz bandwidth completely excludes 
all the Fourier modes outside the range of 71.7 to 72.3Hz and preserves all modes within it. This waveform is 
referred to as the 72Hz waveform or the shedding frequency waveform. After carefully checking all the wavelet 
coefficient plots, the bandwidths of 0.3, 0.6 and 1.0Hz are chosen to reflect consistent information for all cases. 
Those shown in Fig.24 are the 72Hz waveform data, amplitude, and frequency of a case of point A, respectively. For 
the sake of clarity, the vertical scales of data and amplitude plots are shifted upward by a value of 0.1 for different 
frequency bandwidths as shown and that of the frequency plot is shifted by a value of 10Hz, respectively. These 
figures show that a waveform with a wider bandwidth gives a more complicated structure. The amplitude’s 
magnitude reflects the envelope of the data string exactly. The original frequency plot exhibits an oscillatory 
behavior over a finite bandwidth of 4Hz which is introduced by the insufficient sampling rate such that only about 7 
points are employed to resolve a wave length. The frequency plot of Fig.24 has been smoothed by the iterative filter 
using 10,1.0 == mσ . The sharp kinks (for example, at 5.1=t  seconds of the 0.3Hz case) are induced by the 
almost vanishing amplitude. Those shown in Fig.25 are results of the 36 Hz waveform which involve the first sub-
harmonic mode. Although it can not be clearly seen from these figures, the corresponding mean amplitude of this 
figure is larger than that of the 72Hz. It reflects that, within the near wake region, the first sub-harmonic mode 
dominates the flow fluctuation because the shedding vortices can not be directly rolled into the base region of the 
bluff body. This result consists with the extensive studies of Ref.[9] that the low frequency modulation dominates 
this zone. 
 
         In the turbulent flow studies, it is interesting to examine quantitatively the energy and energy variation 
corresponding to the shedding frequency mode and sub-harmonic modes. The energy variation is related to the 
energy cascade between modes with different frequencies. However, this idea is an average over the sample time 
and whole flow field that cannot provide time varying information. Instead of searching the energy cascade between 
Fourier modes, the energy cascade between waveforms at isolated point is a practical and available approach. Since 
the employed experimental data are measured at isolated points and provided the horizontal velocity component 
only, it is impossible to obtain the true magnitude of energy and energy variation here. Fortunately, the present study 
can provide a fraction of physical insight from these limited data.   
 

Those shown in Fig.26a-c are measures of the mean energy of different waveforms (estimated by the 
summation of the local amplitude’s squares, say )(2 tr∑ , corresponding to a waveform) with respect to the 
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x locations for different spectrum band-widths of and 1Hz, respectively. These data are calculated from all 
the 10 experiments and at all measuring points. The lengths of vertical bars are the estimated sample deviations. 
Note that the difference between the maximum and minimum values is about 2.5 times longer than the estimated 
deviation that reflects the random nature of the turbulent flow. All the estimated sample deviations in the near wake 
region are much larger than those in the downstream wake region. This fact also proves that both the random nature 
and low frequency modulation in the near wake region are much more serious than those in the downstream wake 
region as concluded in Ref.[8-10].  

,6.0,3.0

 
For all the window sizes, the estimated mean energy measure of the first sub-harmonic waveform is almost the 

largest one among all the waveforms in the whole wake region as noted previously. In the near wake region, the 
mean energy of the first sub-harmonic waveform is much larger than all the other waveforms. It means that the first 
sub-harmonic waveform rapidly receives energy from the shedding frequency waveform and release energy to the 
second and third sub-harmonic waveforms in the near wake region. At point D, which is at the end of the near wake 
region, two main streams passing through the bluff body’s two sides merge together. The energies of the shedding 
frequency waveform and main stream dominate the total energy here so that the first sub-harmonic waveform’s 
energy drops to the third one. In the downstream wake region, the energy of this sub-harmonic waveform gradually 
transfers energy to other sub-harmonic waveforms and damps out simultaneously.  

 
Within the near wake region where , the energy of the shedding frequency waveform is again the smallest 

one because the main stream can not frequently reach here. It is interesting that the sub-harmonic waveforms of the 
9 and 18 Hz also show a trend of decay from 

dx ≤

dx 5.0=  to dx = . At the further downstream location, the 18 Hz 
waveform decays in an oscillatory manner while the 9 Hz waveform gains energy up to  and then decays, 
too. 

dx 5.1=

 
At the far downstream location, say at region where , energies of all the sub-harmonic waveforms are 

competitive with that of the shedding frequency waveform. Up to the location where
dx 5≥

dx 10= , because all the high 
frequency waveforms (whose Hz) decay to a very small energy level, these sub-harmonic waveforms 
dominate the flow field that quantitatively verifies the conclusion of Ref.[9]. 

72≥f

 
Since the difference of maximum and minimum values of the estimated energy measures is larger than the 

estimated deviation shown in Fig.26, the above discussions are restricted to the mean energy measure only. In fact, 
an unpredictable variation of the energy measures always exists. 

 
    Those shown in Fig.27a-c are the estimated energy changing rates corresponding to those of Fig.26, 

respectively. The measure of energy changing rate is estimated by the summation of over the 
whole sampling period. These energy changing rates are indices of the energy pumping in and out of waveforms. 
These figures show that the main source of the energy recover is provided by the shedding frequency waveform. 
Again, the vertical bars denote the estimated sample deviation among 10 experimental data. The corresponding 
ranges between the maximum and minimum values are also about 2.5 times wider than the estimated sample 
deviation. Measures and deviations of energy changing rate of all the sub-harmonic waveforms are much smaller 
than that of the shedding frequency waveform because these waveforms gradually receive energy from the high 
frequency waveforms and transfer energy to the mean flow. Among three sub-harmonic waveforms, the 18Hz 
waveform is the greatest one at for all the frequency bandwidths. At other locations in the near wake 
region, there is no rule to describe the measure of energy changing rate. In the downstream wake region, among all 
the sub-harmonic waveforms, the 36 Hz waveform has almost the greatest mean energy changing rate as shown. The 
large deviation value of the shedding frequency waveform in the near and downstream wake regions again reflects 
the random nature of the flow field. Therefore, it seems that one cannot obtain a definite rule of the tendency of the 
measure of the energy changing rate. 

|)()(| 22 trttr −Δ+

dx 5.0=

 
The complexity of the flow field can also be reflected by comparing the properties between wide bandwidth 

waveforms. In Fig.28, measures of the average energy of waveforms in the ranges of 4.5-13.5Hz, 13.5-27Hz, 27-
54Hz, and 54-108Hz are shown, respectively. The main features are similar to those shown in Fig.26 of narrow 
bandwidth waveforms except some discrepancies. Now the shedding frequency waveform (with the widest 
bandwidth of 54Hz) has an energy measure larger than that of both the 9 and 18Hz waveforms in the near wake 
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region and competes with that of the first sub-harmonic waveform. Moreover, the tendency of monotonous decays 
in the region where  shows that the shedding frequency waveform’s energy is released to the sub-
harmonic waveforms (eventually recovers to the mean velocity) and damped out simultaneously. 

dx 5.1>

 
As to the estimation of energy changing rate, magnitudes of these wide band-width waveforms show a regular 

sequence (see Fig.29). Obviously, a waveform with a shorter wavelength has a larger energy changing rate than 
those with longer wavelengths. It seems that a long wavelength waveform has a small energy transfer rate because 
the corresponding velocity gradient is small. In other words, both energy transformations of recovering to the 
uniform flow velocity and being damped out are very slow. On the other hand, a short wave waveform has a large 
velocity variation in spatial direction and is easy to induce flow instability so as to pumping energy out of it through 
viscosity dissipation. The total energy pumping rate from the high frequency waveform to the low frequency 
waveforms is also very small because its order of magnitude should be equal to that of the low energy changing rate 
of the sub-harmonic waveforms. These discussions quantitatively verify the well known fact that, in the downstream 
location after the near wake region, all the waveforms inefficiently and gradually pump energy back into the low 
frequency waveforms and eventually cause the mean velocity recovering to the original  as shown in Fig.10. 0U

 
        The above discussions of employing the modified Hilbert transform certainly indicate two valuable rewards: 
 
1. Measures of the energy and energy exchanging rate of a waveform can be precisely extracted. With these data, 

models of energy cascade between waveforms can be constructed in future. 
2. The resulting variations of data, amplitude, frequency, energy, and energy changing rate of waveforms with 

different frequency bandwidths can be employed to explain the existing detailed mechanisms. 
 
       So far it is not known how to employ a suitable bandwidth of the waveform for both wavelet calculation and 
waveform evaluation via the modified Hilbert transform. However, the use of several bandwidths, the wavelet 
coefficient plot, measures of both the energy and energy changing rate of different waveforms gives many detailed 
information which can clearly explain many known phenomena. The authors believe that, using the same procedure 
of this study, one can monitor many detailed effects of a flow control mechanism upon a turbulent flow field or 
examines details of a turbulent flow field without difficulty. 

 

IV. Conclusion 
 

        The enhanced continuous wavelet transform, modified Hilbert transform and an FFT algorithm with small error 
are employed to examine the velocity data of a low speed flow over a bluff body. The flow field is proven to be 
turbulent via the Hurst analysis. Many qualitative details are reflected by the resulting wavelet coefficient plots 
which are not seen before. By using the modified Hilbert transform, the amplitude and frequency of a waveform can 
be precisely evaluated. The quantitative measures of energy and the total energy exchanging rate of a waveform can 
then be explicitly calculated. With this new tool in hand, the related further works will be addressed on: (1) how to 
relate the window size of the band-pass limited spectrum to physics so that it can be reasonably defined; (2) to 
develop new methods to extract unknown information from the two-dimension wavelet coefficient plot; and (3) to 
develop models to reflect the mechanism of energy cascade among different waveforms.  

−u
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Table 5.1 
Average Hurst exponent H and Varianceσ of H  

 bP  A B C D E F G 
H  0.6882 0.6908 0.708 0.7229 0.7017 0.6405 0.6829 0.6978 
σ  0.0233 0.0415 0.0801 0.0121 0.0335 0.0199 0.0188 0.0201 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.1 The original and band-pass limited spectrums: the dashed line is the original spectrum and the solid line 

is a band-pass limited spectrum. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.2 The original data, original and estimated non-sinusoidal plus low frequency parts are shown as the thin 

solid red, heavy green, and dashed black lines around 3)( =tx , respectively. The original and estimated 
high frequency parts are shown as the thin green solid and black dashed lines around 0)( =tx , 
respectively. 
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Fig.3 The spectrum of the original data of Eq.(20) is shown as the long dashed line. The exact spectrum is 

shown as the red solid line and the spectrum of the estimated high frequency is shown as the green 
dashed line, respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.4 Comparison between the exact frequency ( 2=f Hz) and those estimated by the original (thin solid line) 

and modified (heavy solid line) Hilbert transform. 
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Fig.5 Comparison between the given amplitude (=1) and those estimated by the original (thin solid line) and 

modified (heavy solid line) Hilbert transform. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.6 Comparison between the given frequency (=2) and those estimated by the original (thin solid line) and 

modified (heavy solid line) Hilbert transform; the data are extended to 3−=x  and . 13=x
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Fig.7 A schematic drawing of wake flow and setup of measuring position, d = 32 mm. The locations are: 0.5d 

for A, 1d for B, 1.5d for C, 2d for D, 3d for E, 5d for F, and 10d for G. 
 
 
 
 

 
 
 
 
 
Fig.8 The high frequency and smooth parts of a case measured at point A. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.9 The spectrum of the high frequency part of Fig.8. 
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Fig.10 The mean and velocities measured at different locations. 0/Uu 0/' Uu

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.11 The original data of a case measured at point A and the amplitude plot of the wavelet coefficient 

evaluated by the original Morlet transform. 
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Fig.12 The amplitude and real part of the wavelet coefficient plot of case A, generated by the enhanced 

Morlet transform with . 1=c
 
 

 
American Institute of Aeronautics and Astronautics 

 

19



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.13 The amplitude and real part of the wavelet coefficient plot of case D, generated by the enhanced 

Morlet transform with . 1=c
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Fig.14 The amplitude and real part of the wavelet coefficient plot of case F, generated by the enhanced Morlet 

transform with 1=c . 
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Fig.15 The estimated number of peaks and envelope wavelength of a waveform at different frequency. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.16 The estimated waveform number at different instance of time: the square symbol line represents the 

overall waveform number; the circular symbol line represents waveform with energy pumping-in; 
while the triangle symbol line represents waveform with energy pumping-out. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.17 The averaged energy measures of pumping in and out from waveforms at difference instance: the 

gradient symbol line represents pumping-in energy and the triangle symbol line represents pumping-
out energy. 
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Fig.18 The estimated mean, upper and lower bounds of the normalized bandwidth of each waveform. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.19 The real part of an case measured at point A, generated by the proposed modified Morlet transform 
with . 2=c
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(20a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(20b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.20 Comparison of high frequency part of real part plots: (a) uses 1=c (corresponding to Fig.12) and (b) 

uses (corresponding to Fig.19). 2=c
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Fig.21 The estimated number of peaks along =a constant line for different window sizes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.22 The estimated waveform number at different instance for different window sizes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.23 Comparison of the mean frequency bandwidths of waveforms using different window sizes. 
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(24a)                                                                         (24b) 
 
 
 
 
 
 
 
 
 
 

(24c) 
 
 
 
 
 
 
 
 
 
 

Fig.24 The 72Hz rectangular waveform data of the Case A with different bandwidth: (a) is data; (b) is 
amplitude; and (c) is frequency. Three bandwidths of 0.3, 1.2 and 1.5 Hz, are employed. 

 (25a)                                                                    (25b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
(25c) 
 
 
 
 
 
 
 
 
 
Fig.25 The 36Hz rectangular waveform data of the Case A with different bandwidth: (a) is data; (b) is 

amplitude; and (c) is frequency. Three bandwidths of 0.3, 1.2 and 1.5 Hz, are employed. 
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(26a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(26b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
(26c) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.26 The estimated mean amplitude of different waveforms at different x locations: (a) uses a bandwidth of 

0.3Hz; (b) uses 0.6Hz; and (c) uses 1Hz.  
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(27a)                                                                                            
 
 
 
 
 
 
 
 
 
 
 
 
 

(27b)                                                                            
 
 
 
 
 
 
 
 
 
 
 
 
 

(27c) 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.27 The estimated mean energy changing rates of different waveforms at different x  locations, left figures 

are overall plots and right figures are detailed plots: (a) uses a bandwidth of 036Hz; (b) uses 0.6Hz; 
and (c) uses 1Hz.  
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Fig.28 The comparison of the average energy measures between different wide bandwidth waveforms, these 
modes use 4.5-13.5Hz, 13.5-27Hz, 27-54Hz, and 54-108Hz windows, respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.29 The comparison of the average energy changing rates between different wide bandwidth waveforms, 
these modes use 4.5-13.5Hz, 13.5-27Hz, 27-54Hz, and 54-108Hz, respectively. 
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