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ABSTRACT

Two sharp high/low passed filters are developed. The first filter bases on the iterative and diffusive filter
and a simple Fast Fourier Transform (FFT) algorithm and the second filter employs the linear trend removal
and the FFT algorithm. The iterative filter is modified to ensure the non-negative property. The first
procedure of the proposed sharp filter involves the following steps: uses the iterative filter to define the
cutting point on the frequency domain; evaluates the spectrum of the high frequency part generated by the
iterative filter; removes all modes with frequencies smaller than the cut-off frequency; performs the inverse
FFT to obtain the high frequency part; and the difference between the original data string and high frequency
part is the non-sinusoidal and low frequency part. Band-passed limited spectrums are then directly evaluated
by imposing desired band on the spectrum. The second filter following the same procedure except that the
smooth part is summing up the linear removed part and the smoothed part evaluated by the low frequency
modes with frequency smaller than the cut-off frequency. A test case of low speed turbulent flow data is
employed to show the performances of these two filters. From the resulting data strings corresponding to
several bandwidths, which have sharp cut-off resolution around cut-off frequencies, show that these two

filters have similar performance and are very fast.

Keywords: sharp filters, iterative and diffusive filter, spectrum with small error.

Introduction

Because of the rapid development of
computer hardware and software, the capability of
collecting huge number of long data string increases
rapidly. Generally, a real data string frequently has a
complex structure which changes main characters
rapidly. The current method considers the Fourier
spectrum as a parameter representation of time
series data, yg,y; ... Yo, Where n is the data size.
In fact, the Fourier spectrum is an exact parameter
representation of the original data only if the data
and all the derivatives up to (n-1)th order are
periodic. Unfortunately, most data string can not
satisfy these restrictions simultaneously so that the
corresponding discrete Fourier spectrum represents
the original data string in a weak sense. According
to the authors’ experience, most of these Fourier
spectrums frequently involve certain minor errors
which reflect a fraction of information of the

dominant modes and contaminate almost all minor
modes. In Ref.[1-7], an approximate Fourier sine
spectrum was proposed to replace the Fourier
spectrum. Note that a Fourier sine spectrum
requires y=0 at two ends and odd function
properties. In order to satisfy these requirements,
finite segments around the two ends should be
discarded and the non-sinusoidal part must be
removed. Therefore, most of the resulting Fourier
sine spectrums may slightly deviate form their
corresponding Fourier spectrums.

In Ref.[8,9], The non-sinusoidal part is
estimated by the smooth part generated by the
iterative and diffusive filter. Unfortunately, the
transition zone of the filter cannot be made sharp
enough with a reasonable computing time. This
study will propose a modified version of the
iterative filter and an simple filter without the
iterative procedure.
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Analysis
The Iterative Filter Basing on Gaussian
Smoothing
Assume that a discrete data string can be
approximated by

y(t) = gébn cos[iﬂ]+ Cn sin(zjti J Q)

n n

In Ref.[5,6], it was proven that after applying the
Gaussian smoothing once, the resulting smoothed
data becomes

N _ _
¥(t;) ~ D> a(o/ An){by cos(zﬂt' J+cn sin( 28, }} (2
n=0 An A
where a(o/4,)is the attenuation factor introduced
by the smoothing and takes the following

approximate form in the interior points remote from

the two ends (say |i-ipoyngary | At > 40 ).
& _ 27t
a(o, ﬂ,)zl > el (20%) g 7N
k j=—o0 /Il
3)

K ~ ie—tiz/(ZJZ)

j=—00

It can also be proven that

V) = D% —Vial< Dlyi-via|=TV(y) @)

j=—00 i=—o0
From Eqgs.(3) and (4), it can be easily proven that
a(o/2y) ~ exp[-27202 1 221 <1 (5)

The negative property of a(s/4,) can only be
proven numerically and may be violated by the
machine error of the computing device. If the
Gaussian smoothing is employed to smoothed
yi = ¥(t;) again to obtain

Vi = Vi(tj) =~

N i -
> a%(o/ An Yoy cos[zjt' J+cn sin[zf' )} (6)

n=0 n n
The attenuation factor will satisfy the diffusive
property, say

0<a’(c/A,)~exp[-4r2c? 1 12]<1 (7)
If the removed high frequency part is denoted as
yi',l and apply the same smoothing twice to it to
obtain the second smoothed result as y;, and
repeat the same procedure to obtain the m-th
smoothed and high frequency part as y,; and
y;n,iv respectively. The following relation can be
built

N . .
Ymi = 2. [1-a’(c/ Iy )]m{bn cos[zf' ]+cn Sin[zjt' ]

n=0 n n

Vi (M) = Yoi +Voi et Vi = ¥i =~ Ymi

- %An,m,o{bn COS(%\J_H:” Sin[zz: H (8)

yi(m) can be considered as the smoothed part and
y;n,i as the high frequency part. After substituting
Eq.(7), in the interior points remote from the two
ends, the attenuation factor of employing the
Gaussian smoothing method satisfies
Anmo ~1-[L-exp{-4z%c? 1 23)"

0<Aymo <1

©)

Obviously, the accumulated smooth part is
embedded by a diffusive attenuation factor with
negligible phase error in the interior point remote
from the two ends.

Suppose that one want to cut the spectrum
at 4., all modes with 4 < A, will be preserved while
the rest modes with 1> A, together with the
non-sinusoidal part will removed. It should be
noted that a discrete Fourier expansion will embed
spectrum components almost running over the
whole spectrum to reflect the non-sinusoidal part.
These Fourier components involve two parts: the
original non-sinusoidal part and embedded part to
enforce the two ends of non-sinusoidal part to be
periodic. The embedded part has a significant
magnitude around the two ends and rapidly
attenuates to an insignificant magnitude in the
interior points remote from the two ends. If the
interest region is restricted in the interior part where
4o <ty <t,—4c , all the embedded Fourier
components have insignificant contribution [10]. In
other words, the modes with 2> 4, can properly
represent the non-sinusoidal and low frequency
parts in the interior points. Based on this fact, the
following equations are employed to solve the
desired parameters o and number of iteration
steps m.

1-[L—exp(-47 202 1 22)™ =0.999

_ (10)
1-[l—exp(-47°c? 1 2%)]™ =0.001

where 1 <0.1t, is employed to ensure a sufficient
wide range with an accurate of Fourier resolution.
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Before the FFT algorithm of Ref.[3] is
employed. One can use a classical FFT algorithm to
obtain a spectrum. After inspecting both the original
data and spectrum, he can decide a suitable
transition range defined by 4, and 1 to remove
the estimated non-sinusoidal and low frequency
part.

Monotonic Cubic Interpolation Method

For the sake of simplicity and to employ the
data structure of a computer, it seems convenient to
use the simple FFT algorithm whose data points are
exactly equal to2™. Because a real data string may
not have exactly the number of integer powers of 2
in uniform spacing form, an interpolation scheme
should be employed to redistribute the points. In
Ref.[1], a Hermite cubic interpolation between
points (t;, t;,1) is employed, say,

YO=Cs(t-4)7 + e (-t)" rert-t) sy,

Co = Vi, &1 = Viu Sivs2 = Vier — Vi) Mtiss —t;)

_ Yi+Yia = 2Sias
(ti+l_ti)2

In order to avoid spurious oscillation, Ref.[1]

modified the M3A interpolation of Ref.[11] to give

necessary limiter to slopes y;,y;,; as

yi =sgn(k;)

ETR : - k
mm{a‘pillz(ti)"‘ pi+1/2(ti)‘a max{k |'si l'El Ki |H

¢, = 38is1/2 = 2Yi — Vi
tiza =1

Pi-1/2(6) =Si—1/2 + di1/2(t — tiy),
Pis1/2(t) =Sis1/2 + diay 2t —tisg),
ki =minmod|pi_y/(t). pl11/2(t) (12)
dis1/2 =minmod[d;, di1 )
di =(Siz1/2 = Si-1/2) /(tiys —ti1)
s =minmod[s;_y/ »,Si11/2]
k=3, if [si1/2 P> Sic/2 |, OF |Sizgy2 P>ISia1y2 |
>4, otherwise

At two ends, the Hyunk boundary condition will be
employed [11]. As noted in Ref.[3], if a fixed factor
value of k =3is employed, this cubic interpolation
might introduce too much artificial modification.
Fast Fourier Sine Transform Algorithm

In terms of the iterative filter, the FFT
algorithm of Ref.[1] is modified to be the following
steps:

1. Employ the iterative filter to remove the
non-sinusoidal and low frequency parts.

2. For the remaining high frequency part, choose
zero crossing points at two ends. Use an
interpolation method to find O points there.

3. Use the modified monotonic cubic interpolation
of Ref.[1] to regenerate the data so that total
number of points are of 2™. For a smooth data
string, more than one point should be located in
the range between two successive data points of
the original data string to reduce interpolation
error. For an oscillatory data such as the
turbulent data taken by an insufficient sampling
rate, more than 4 points should be considered.

4. Perform an odd function mapping with respect
to one end so that the final data point is
doubled.

5. A simple and fast Fourier sine transform
algorithm is employed to generate the desired
Fourier sine spectrum.

Since the values are chosen at two ends, the penalty

of shrinking the available data range can not be

avoided. Note that the odd function mapping makes
the perfect periodicity of the resulting data string.

The Proposed Sharp High-Passed Filter

a. Filter Using the Iterative Gaussian Smoothing
The solution of Egs.(10) shows that to obtain a

narrow transition of the factor A, ,, , can only be

obtained via a significantly large iteration steps, say
m>10". For a practical calculation where m <150,
there will have many modes in the range of

Ae <A< A with significant amplitudes. In other

words, the spectrum of the high frequency part has

not a sharp cut at 2.. One can exclude these modes
to obtain a sharp high-passed filter. For the sake of
completeness, the procedures are listed below.

1. Use an available FFT algorithm to estimate the
Fourier spectrum of a data string.

2. Determine the cut-off frequency corresponding
to 1. and 1.

3. Find the corresponding smooth factor o and
iteration step m by solving Egs.(10).

4. Perform the iterative filter basing on the
Gaussian smoothing method to obtain the
estimated smoothed and high frequency part.

5. Use the above mentioned strategy to evaluate
the Fourier sine spectrum.

6. Remove the modes whose 4> . and find the
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resulting high frequency part. The difference
between the estimated high frequency part and
this high frequency part is the extracted smooth
part which is equal to the inverse Fourier
transform of the removed modes.

7. The summation of the estimated and extracted
smooth parts is the desired smooth part.

8. The other sharp band-passed limited spectrum
can be directly obtained by embedding unit
block window on the spectrum. The
band-passed limited data string is the
corresponding inverse Fourier transform.

In order to reduce the computing time, one can

choose the cutting point at A, with 1/1; =4 so

that the required parameters are (o, m) ~ (0.4780,9) .

After obtaining the high frequency part, those

modes whose 1< 4. are retained, and put modes

with 2> 4. to the smoothed part.

b. Sharp Filter Using the Fourier Sine Spectrum

The previous sharp filter requires long
computing time to employ the iterative Gaussian
filter. The procedure of a fast and sharp filter which
directly employing the Fourier sine spectrum is
listed below.

1. Properly choose two end points of the data
string.

2. Use the linear trend removal so that the data
string has zero value at the two ends.

3. Use the above Fourier sine procedure to find
the spectrum.

4. Choose the desired cut-off frequency and
perform the inverse Fourier transform of the
modes whose frequency is smaller than the
cut-of frequency. Add this inversed data to the
linear part removed by the linear trend removal.
The resulting data is the smoothed part which
corresponding to the smoothed part estimated
by the iterative Gaussian smoothing.

5. Find the Fourier sine spectrum of the remaining
high frequency part. Again, remove the modes
whose frequencies are small than the cut-off
frequency.

It should be noted that, it is not easy to properly

choose suitable end points. Therefore, like the

previous sharp filter, this filter have to discard
points around the the end points. Moreover, in order

to ensure an accurate estimation, the discard ranges
around the two end should be larger than that of the
iterative sharp filter.
Results and Discussions

The test case is shown in Fig.1 which is the
u -velocity data measured at the near wake region
of a low speed turbulent flow over a bluff body [12].
The measured point is at a distance of 0.5D from
the base of the bluff body, where D is the width
of the bluff body. The result of employing the
original FFT algorithm is shown in Fig.2.

By choosing the cut-off frequency at 2 Hz
(i.e. 2.=0.5 sec.), and 1 =2 sec. The solution of
Eq.(9) gives m=10, =03 . The resulting
estimated high and low frequency parts are shown
in Fig.3. After exclude the modes with f <2Hz,
the resulting high frequency part is shown in Fig.4.
The smoothed part extracted from those modes with
f <2Hz is shown as the dotted line in Fig.5 and the
final smooth part is shown as the solid line which is
the summation of the extracted and estimated
smooth parts. A comparison between the final
spectrum shown in Fig.6 and Fig.2, it is obvious
that the spectrum has sharp cut at f =2Hz. Those
shown in Figs.7 are data strings in the bandwidths
of f=2-20Hz, f=20-50Hz, and f >50 Hz,
respectively. These data strings are cut-off sharply
at the cut-off frequency, say f =2Hz.

Figure 8 shows the original data string and
smoothed part estimated by the Fourier sine
spectrum which are corresponding to that of Fig.3.
The original estimated smoothed part, smoothed
part extracted from those modes with f <2Hz and
final smoothed part are shown in Fig.9, which
corresponding to Fig.5. Finally, as corresponding to
Fig.7, data strings in the bandwidths of
f=2-20 Hz, f=20-50 Hz, and f >50 Hz,
respectively, are shown in Fig.10. A carefully
comparison between Figs.7 and 10 reveals that both
methods give almost similar data strings of high
frequency bands.

Conclusions

The simple strategy of FFT algorithm with
small spectrum error and the iterative filter are
successively employed to generate two sharp
low-passed filters. The performances of these two
sharp high/low passed filters are similar to each
other.
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Fig.1 The original u-—velocity data.
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Fig.2 The original overall (top) and detailed
(bottom) spectrums.
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Result of iterative fitter
thin line : high frequency part
heawy line : smoothed part

Fig.3
The result of employing the iterative filter
with m =20, o =0.3: the thin line is the high
frequency part and the heavy line is the
smoothed part.

solid line: final high frequency part
cut-off all freq. < 2 Hz

1

1 1 1 1 )
2 4 [} 8 10

Fig.4 The final high frequency part with cut-off
frequency at f =2Hz.

dotted mn lm-uum
ed by modes mmq ZH2
thin lﬂll Iﬂl final smoothed part
Neavy seid ine ; onginal smocthad part
wthout modﬁ with freq. < 2H2
sut-off 2 freq, <

Fig.5 The smooth part generated by the first sharp
filter is shown as heavy solid line; the dotted
line is the extracted smooth part
corresponding to those modes with f <2Hz;

and the final smooth part is the thin solid line.
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( ) Estimated by iterative Gaussian method
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(C) Estimated by iterative Gaussian method
data of band in freq. > 50 Hz
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Fig.7 The data strings with finite band-widths, find
by the first sharp filter: (a) 2-20 Hz, (b)
20-50Hz, and (c) frequency larger than 50Hz.

Thim line : hlghhwenw part data

eftnght cutting point = 2/3
Ilnear trend remaoval

Fig.8 The first result of employing the second
iterative filter with linear trend removal and
inverse data from low frequency modes of the
Fourier sine spectrum: the thin line is the
high frequency part and the heavy line is the
estimated smoothed part.
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Fig.9 The smooth part generated by the second

sharp filter is shown as heavy dotted line; the B2
thin solid line is the extracted smooth part
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Fig.10 The data strings with finite band-widths, find
by the second sharp filter: (a) 2-20 Hz, (b)
20-50Hz, and (c) frequency larger than 50Hz.



