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ABSTRACT 
The iterative filter using the Gaussian smoothing method is employed to decompose and repair a tide data string 

composed of many tidal wave components. Since the iterative filter can ignore the effect of missing data to certain 
extent, the tidal wave components can be successively decomposed. However, because the employed wave 
decomposition method cannot decompose a composite wave found by two wave components whose frequencies close 
to each other, three beats are found. For those wave components whose wavelengths are larger than 2  times the 
drop-out period, the missing data can be satisfactorily achieved by merely applying the filter. For a longer period of 
missing data, an iterative technique is developed to repair the data. The tide data of the Houbihu harbor in Pingtung at 
south part of Taiwan during the period of Jan. 1 through Dec. 31/2001 was employed to demonstrate the procedure of 
wave decomposition and data repairing. 
Keywords: FFT with small error, Time Frequency Analysis. 

 
1. INTRODUCTION 

Because of the rapid development of computer 
technique, people can collect many data string 
simultaneously now. In near future, the nano technology 
will further increase the number of data string 
exponentially. Today, before analyze a data string, people 
often classify, validate, and edit the data which exclude 
unavailable part, arrange the available part. For example, 
in Ref.[1], six types of random data anomalies are listed 
and are recommended to exclude them manually. 
However, as the number of data string increases to a 
certain level, it is impossible to do such a data 
qualification manually again. Therefore, the 
automatically data qualification procedure via a software 
becomes more and more important and urgent. 

After the data anomalies are identified, one may 
employ available methods to repair the data anomalies. 
From the result of a previous study [2], it seems possible 
to repair short and moderate period of anomalies which 
may be missing data or abnormal data.  

One of the important issue of data analysis is how to 

decompose a composite wave. In Ref.[2], the technique 
of wave decomposition basing on the iterative filter of 
Ref.[3-5] is employed as a fundamental tool to repair 
data drop outs. After data repairing, is necessary to 
inspect whether or not the main features are captured or 
not. A classical method is to check the Fourier spectrum 
and examines if the dominate frequency is shifted. 
However, the Fourier spectrum is an overall property 
which can not reflect local properties.  
    A powerful to extract local features of a data string 
is the continuous wavelet transforms [6-9]. In Ref.[7,8] 
Farge pointed that the Fourier spectrum reflects the 
lumped information over the expansion range and can 
not provide the local information. Unfortunately, there 
are not much detailed information can be directly 
obtained from the resulting wavelet coefficient plot. 
From mathematical point of view, the wavelet transforms 
employs the convolution integral is in some sense equal 
to a projection method. However, a finite data string 
cannot be perfectly expanded by the Morlet and related 
transforms because the embedded kernel function 
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eliminates the orthogonal property between eigen 
functions. Consequently, the resulting wavelet coefficient 
evaluated at a specific scale function is contaminated by 
the effect of ignoring all the non-orthogonal functions 
corresponding to other scale functions. Recently, the 
continuous wavelet (Morlet) transform was enhanced by 
using a band-passed data to evaluate the wavelet 
coefficient rather using the original data [10,11]. It seems 
that the band-passed data does reduce the contamination 
to certain extend. 

Tides around Taiwan result from shoaling effects of 
tidal constituents in the Pacific Ocean propagated 
westward to the continental shelf. According to the 
harmonic analyses of tide data at Houbihu harbor in 
southern coast of Taiwan, the Luni-solar Diurnal (K1) 
and the Principle Solar Diurnal (O1) are the largest 
diurnal tidal components, and the Principle Lunar (M2), 
the Principle Solar (S2), the Larger Lunar Elliptic (N2) 
and the Luni-solar Semidiurnal (K2) are the largest 
semidiurnal tidal components. Besides, the monthly, 
fortnightly, annual, semiannual and the long-term (18.61 
years) variations of water level are also included. In 
other words, the tide wave data involves complex 
structure and is a good test case to examine the 
performance of a data analysis tool. 

 In this study, the wok of Ref.[2] will be completed 
by using the enhanced Morlet transform to check the 
main features of the tide wave which involves short and 
moderately long data missing periods. 

 
2. ANALYSIS 

The Iterative Filter Basing on Gaussian Smoothing 
    Assume that a discrete data string can be 
approximated by 
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In Ref.[5,6], it was proven that after applying the 
Gaussian smoothing once, the resulting smoothed data 
becomes 
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where )/( na λσ is the attenuation factor introduced by 
the smoothing and can be proven numerically that 
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)(my  can be considered as the smoothed part and '
my  

as the high frequency part. After substituting Eq.(3), the 
attenuation factor of employing the Gaussian smoothing 
method satisfies 
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Obviously, the accumulated smooth part is embedded by 
a diffusive attenuation factor without phase error. It was 
also proven in Ref.[5,6] that the transition region from 

σ,,mnA = 0 to 1 is much narrower than that of the original 
)/( na λσ  for a sufficiently large iteration step m . 

Suppose that all the waveforms within the range of 
21 cc λλλ <<  are insignificantly small. The above 

mentioned iterative smoothing procedure can be an 
effective filter to give both the low and high frequency 
parts. The desired parameters σ  and number of 
iteration steps m  are solved by the following 
simultaneous equations.  
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where 999.0,001.0, 21 =BB  are employed in this study. 
    Before the iterative filter is employed, one can use a 
classical FFT algorithm to obtain a spectrum. After 
inspecting both the original data and spectrum, he can 
decide a suitable transition range defined by 1cλ  and 

2cλ  to remove the non-sinusoidal and low frequency 
part or to separate the composite wave into high and low 
frequency parts. Moreover, the filter can also be  
repeatedly employed to give a band-passed data string to 
evaluate the time dependent spectrum within a specific 
frequency band. For such a requirement, the spectrums 
within two transition zones H

c
H
c 21 λλλ <<  and 

L
c

L
c 21 λλλ <<  in the high and low frequency sides of the 

band, respectively, should not be seriously counted. In 
fact, as comparing with the band-passed data obtained by 
just dropping the spectrum associated to H

c1λλ <  and 
λλ <L

c2 , these transition zones are employed to keep the 
generality of the band-passed data string. The direct 
method of dropping undesired modes from the Fourier 
spectrum has the possibility of missing the information 
reflecting the frequency variation of waveforms. 
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Monotonic Cubic Interpolation Method 
For the sake of simplicity and to employ the data 
structure of a computer, it seems convenient to use the 
simple FFT algorithm whose data points are exactly 
equal to m2 . Because a real data string may not have 
exactly the number of integer powers of 2 in uniform 
spacing form, a interpolation scheme proposed in 
Ref.[12,13] should be employed to redistribute the 
points.  
Fast Fourier Transform Algorithm 
   The following FFT algorithm of Ref.[13] will be 
employed in this study to find spectrum.  
Data Repairing 

According to Ref.[1], before performing the data 
analysis, the data qualification should be made. One of 
the qualifications is to check if there is data missing. If 
there do have data missing, one can mark the missing 
location with certain constants that are easily be 
recognized by program.  

In Ref.[2], it had been proven that to decompose the 
original data string with data missing into several 
waveforms is a useful procedure for data repairing. The 
decomposition procedure is achieved by the iterative 
filter. It had also been found that, if the data drop-outs 
are at isolated points or only but a few continuous points, 
the iteration can be done automatically.  

For those missing data running over a long period, 
the following strategy of Ref.[2] is restated below for the 
sake of completeness. The waveform decomposed by the 
iterative filter has abnormal regions around a long data 
drop-out region. The region runs across a length  

σ2≈ (or one wavelength) next to the missing points. 
Beyond the region, the resulting wave component data is 
nearly not influenced. Consider the data drop-outs of a 
beat wave shown in Fig.1. Basing on the above 
mentioned fact, most data remote from the missing point 
can be employed to be a reference data string. Around 
the data drop-out region, the upper and lower envelopes 
are constructed by connecting the local maximum and 
minimum points via the above mentioned monotonic 
cubic spline interpolation [3,4], respectively. 

Next, these envelopes are employed to scale up the 
wave data outside the drop-out region and the scaled data 
is shown as thin line whose amplitude is almost constant. 
Third, as shown in Fig.2, a segment of scaled wave data 
within the range marked by two arrows is shift to the 
drop-out region and is shown as dotted line. Fourth, the 
shift data is scaled back as shown in Fig.3. Fifth, in the 
drop-out region, this shifted data is chosen as the 
repaired data component. Note that the original wave 
component is different from the repaired one outside the 
drop-out region because the original one is seriously 
affected by the missing data. 
   The same procedure is applied to all wave 
components except the highest frequency part which is 
referred as noise. For those wave components with long 

enough wave length, the short period data drop-out 
region is automatically repaired and need not to treat it. 
Finally, the repaired data of all wave components are 
summed up to replace the data drop-out points. However, 
as the above mentioned discussion about Fig.3, the 
repaired data may or may not consist with the existing 
data. Therefore, the above procedure should be 
repeatedly applied until the slopes at all end points of 
every drop-out region are smooth. 
Enhanced Morlet transforms 
The following Morlet transform transfer a data string 

)(ty  into the wavelet coefficient. 

∫
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function. If this transform is applied over a range 

10 aaa ≤≤ , a two-dimensional wavelet coefficient plot is 
obtained on the ),( τa  plane. By applying Eq.(7) to 
Eq.(1) it can concluded that the scale function a can be 
closely related to the wavelength nλ  such that the mode 
with 3/πλ am = gives a maximum response. The work 
of Ref.[10,11] performs a band-passed filter to the 
original data and eventually gives the following wavelet 
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where the factor )8/( 222 σπT added to 2/2a  is result of 
band-passed filter with σ as the window size on 
spectrum domain. If one perform the summation over all 
the values of a ’s, the inverse transform can be easily 
obtained from the real part because the factor embedded 
to the spectrum nb  and nc in Eq.(8) are the same. If the 
band-passed data is not added, the parameter 2/2a of the 
exponential function shows that, in the high frequency 
part (with a smaller a ), the contaminated bandwidth 
running over a wider range of different modes (denoted 
by n ) than that in low frequency part (with a larger a ). 
This property reflects the fact of violating the 
completeness of the Weistrass approximation theorem 
such that a expansion should starts from the lowest order 
eigen function rather than just use a high order eigen 
function. 

In order to effectively reflect the original data’s 
character, let 

1111 /,/,/ ++−− === nnnnnn TkTkTk λλλ       (9) 
The window size scale σ  takes the following value 

|]||,max[| 11 nnnn kkkkc −−⋅= +−σ          (10) 
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where 1=c or 2 is recommended. 
3. RESULTS AND DISCUSSIONS 

The tide data of the Houbihu harbor in Pin-Tung at 
south Taiwan in the period of Jan.1 through Dec. 
31/2001 is employed to illustrate the proposed repairing 
procedure. The data is the water level in mini-meter 
recorded at every hour. It contains many isolated data 
drop-out points, a three-hour missing period, a one day 
drop-out, and a two day drop-out region. The Original 
data is decomposed by a 10 stages filtering procedure. At 
first σ =0.1 =m 30 is employed to eliminate the noise. 
Then, σ =90,30,10,5,3,1,0.4,0.25,0.125 and 120=m are 
successively employed to generate waveforms for 
repairing. In order to demonstrate the efficiency of data 
repairing, the data after repairing is again drops for a 
period of 2 or 9 days. That shown in Fig.4 is data missing 
of 2 days. Because the data missing period is shorter than 

5=σ  days, the repaired waveform of Fig.4b closes to 
the original data. In Figs.4c and 4d, because there are not 
suitable sinusoidal data to be employed, the departure of 
the repaired waveform from the original data is 
significant. For such a situation, the neuro-network 
method is a possible solution provided that there are 
many available data base. The repaired data of Fig.4e 
and 4f are reasonable, while that in Fig.4g has a large 
departure. On the whole the over repaired data closes to 
the original data reasonably. 

 For the case of artificially drop out of 9 days long, 
the resulting repair is shown in Fig.5. The departure is 
significantly large. From these two tests, the following 
conclusions can drawn: (1) for those waveforms whose 
data missing period much less than the damping 
factorσ (to remove the high frequency part), the iterative 
filter can automatically recover the original data with 
insignificant error; (2) for those waveforms with a 
missing period less than 10 times of damping factor σ , 
the repairing is acceptable; (3) for those waveforms with 
a missing period in the range of 10 σ to 20 σ , the 
repaired data has significant error; and (4) for a missing 
period in the range longer than σ20 , the repairing is 
only but for reference but is better than nothing. In fact, 
for the missing period longer than 10σ , one should try 
another possible repairing method. 

The result of repairing the original data with true 
data missing is shown in Fig.6. In Fig.6a, the short 
period data missing is repaired easily by the iterative 
filter. For the one and two days data missing, shown in 
Fig.6b and 6c, respectively, the two cycle repairing 
seems reasonable. 
    In order to check whether the repaired data capture 
the main features or not, the enhanced Morlet transform 
is employed to generate the two-dimensional wavelet 
coefficient plots. That shown in Fig is the resulting plot 

of the whole-day tide. Those for other tide waveforms 
are not shown here because of length limitation. Fig.8 
shows the spectrum of the repaired data but filtered by 

4=σ days and .30=m  The resulting spectrum and 
wavelet plots construct a good checking mechanism to 
examine the effect of data repairing. It seems that the 
data repairing do not introduce significant error to the 
wavelet coefficient plot so that the main features are 
clearly captured. Those shown in Table 1 through 4 are 
the comparison between the standard waves and 
estimated waves for the whole-day, half-day, 1/3 day, and 
1/4 day tides, respectively. A careful inspection upon 
these tables reveals that the present data repair method 
works very well for this data string with a moderate data 
missing period. 

4. CONCLUSIONS 
    A complete procedure of data repairing employing 
the iterative filter, monotonic cubic interpolation and a 
simple FFT algorithm are successively constructed. The 
test cases show that the method are suitable for a 
moderate and small data missing period.  
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Fig.1 The schematic diagram of data repairing. For the 
central line: 0 denotes regular data, -50 is 
drop-out point; dotted lines are upper and lower 
envelopes; heavy line is the original decoupled 
wave; thin solid line is the scaled wave. 

 

 

 

 

 

 

 

 

 

 

Fig.2 Wave data in the region marked by two arrows are 
moved to the data drop-out region and is shown as 
dotted line. 

 
 

 

 

 

 

 

 

 

 

 

 

Fig.3 The shifted data string is scaled back as the dotted 
line.  

  (4a)                     (4b) 
 
 
 
 
 
 

  
(4c)                   (4d) 

 
 
 
 
 
 
 

  (4e)                   (4f) 
 
 
 
 
 
 
 
 

(4g)                  (4h)  
 
 
 
 
 
 
 
 

Fig.4 The original and repaired data plots for 2 days data 
drop-out, horizontal line is days and vertical is mm 
height of wave: (a) original data; (b) 3 cycle 
repaired data of the long waveform decoupled by 

10=σ and 5 days; (c) by 5=σ and 3 days; (d) by 
3=σ  and 1 days; (e) 1=σ and 0.4; (f) =σ 0.4 

and 0.25; (g) =σ 0.25 and 0.125; and (h) The 
comparison between original and repaired data 
strings. 
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Fig.5 The original data with 9 days long artificial data 

missing and repaired data. 
 
(6a) 
 
 
 
 
 
 
 
 
(6b) 
 
 
 
 
 
 
 
 
(6c) 
 
 
 
 
 
 
 
 
 
Fig.6 The repaired data compares with original data: (a) 

short period data missing repaired by 075.0=σ ; (b) 
1 day data dropout, dotted line is the first cycle 
repaired and solid line is the second cycle result; 
and (c) 2 days drop out with the same symbol as 
that in (b). 
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(7b) 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.7 The two-dimensional wavelet plot for the 

whole-day tide waveform: (a) real part plot and (b) 
amplitude plot. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.8 The resulting spectrum of repaired data filtered by 

4=σ  days. 
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  Table -1 The Whole-Day Tide Data Comparison 

wave 
Exact 

λ  
Cal. λ  λ∆  maxA  minA  A  

OO1 22.306 22.36 .009~-.007 2.078 0.371 1.842

J1 23.1 23.06 .021~-.013 2.437 1.736 2.348

K1 23.935 23.92 .012~-.038 3.774 3.423 3.747

P1 24.066 24.03 .155~-.012 3.323 2.761 3.196

M1 24.86 24.81 .06~-.024 2.826 2.123 2.609

O1 25.819 25.81 .003~-.061 3.714 3.101 3.645

Q1 26.868 26.85 .048~-.086 3.063 2.62 2.996

SIG1 27.848 27.83 .137~-.03 2.337 1.945 2.293

--- --- 28.83  .04~-.044 2.022 1.676 1.989

ALP1 29.095 29.04  .015~-.002 2.048 1.178 1.915

Table -2 The Half-Day Tide Data Comparison 

wave 
Exact 

λ  

Cal. 

λ  
λ∆  maxA  minA  A  

ETA2 11.754 11.745 .003~-.011 2.101 1.703 2.019

K2 11.967 11.967 .002~-.006 3.176 2.756 3.042

S2 12 11.993 .009~-0006 3.437 3.019 3.398

T2 12.01 12.02 .005~-.002 3.052 2.466 2.747

L2 12.19 12.19 .009 ~-.003 2.247 1.5 2.074

LDA2 12.22 12.225 .01~-.002 2.257 1.869 2.16

M2 12.42 12.415 .002~-.001 3.841 3.526 3.836

NU2 12.626 12.619 .012~-.009 2.618 2.266 2.519

N2 12.658 12.656 .011~-.004 3.12 2.739 3.082

MU2 12.87 12.868 .001~-.011 2.49 2.07 2.407

2N2 12.905 12.898 .016~-.001 2.163 1.693 2.087

Table -3 The 1/3 Day Tide Data Comparison 

wave exact λ  Cal. λ  λ∆  maxA  minA  A  

--- --- 7.835 .001~-.003 1.264 0.684 1.18

SK3 7.992 7.984 .01~-.004 2.107 1.521 1.923

--- --- 8.166 .006~-.004 2.168 1.75 2.12

MK3 8.177 8.177 .005~-.002 2.303 1.771 2.202

SO3 8.192 8.191 .008~-.001 2.071 1.532 1.957

M3 8.28 8.273 .006~-.001 2.125 1.545 2.018

--- --- 8.302 .001~-.001 1.541 1.12 1.455

--- --- 8.335 .003~-.002 1.574 1.269 1.556

--- --- 8.364 .005~-.003 1.784 1.078 1.387

MO3 8.386 8.387 .004~-.005 2.132 1.808 2.113

 
Table -4 The 1/4 Day Tide Data Comparison 

wave exact λ Cal. λ λ∆  maxA  minA  A

SK4 5.992 5.995 .002~-.001 1.795 0.904 1.584

S4 5.999 6.004 .004~-.002 1.561 1.214 1.513

--- --- 6.014 .001~-.002 1.582 0.631 1.368

--- --- 6.029 .002~-.005 1.726 1.029 1.465

MK4 6.095 6.095 .005~-.002 1.781 1.315 1.674

MS4 6.103 6.102 .001~-.010 1.867 1.479 1.841

--- --- 6.146 .001~-.004 1.568 0.949 1.482

SN4 6.16 6.156 .002~-.003 1.674 1.069 1.513

--- --- 6.209 .001~-.004 2.023 1.514 1.9
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摘    要 
    本文應用移動式高斯平滑法做為疊代式濾波器，對潮汐

之波形所組合成的複合波數據進行拆解和修補。對於單一和

少數連續數據之空缺點，疊代式濾波器可以自動修補之。然

而對於兩頻率相近的波所組合而成的複合波，本文所應用的

波拆解法尚不能成功的將此複合波拆解出兩個獨立的波，因

此本文發展出針對各波形修補的簡易方法。 

對於較長時間的空缺數據點，若波長大於空缺時間波形

的 2 倍，空缺數據可以疊代式濾波器自動修補之。若波長

小於空缺時間波形的 2 倍，將使用簡易的修補方法，對各

個短波長的波形進行修補。本文並以屏東後壁湖漁港的水位

數據為例，說明複合波的拆解和數據修補的過程。 

 
關鑑詞:數據修補，疊代型濾波器，快速傅立葉轉換

式，小波法。 
 
 


