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ABSTRACT

The iterative filter using the Gaussian smoothing method is employed to decompose and repair a tide data string
composed of many tidal wave components. Since the iterative filter can ignore the effect of missing data to certain
extent, the tidal wave components can be successively decomposed. However, because the employed wave
decomposition method cannot decompose a composite wave found by two wave components whose frequencies close
to each other, three beats are found. For those wave components whose wavelengths are larger than 2 times the
drop-out period, the missing data can be satisfactorily achieved by merely applying the filter. For a longer period of
missing data, an iterative technique is developed to repair the data. The tide data of the Houbihu harbor in Pingtung at
south part of Taiwan during the period of Jan. 1 through Dec. 31/2001 was employed to demonstrate the procedure of

wave decomposition and data repairing.

Keywords: FFT with small error, Time Frequency Analysis.

1. INTRODUCTION

Because of the rapid development of computer
technique, people can collect many data string
simultaneously now. In near future, the nano technology
will further increase the number of data string
exponentially. Today, before analyze a data string, people
often classify, validate, and edit the data which exclude
unavailable part, arrange the available part. For example,
in Ref.[1], six types of random data anomalies are listed
and are recommended to exclude them manually.
However, as the number of data string increases to a
certain level, it is impossible to do such a data
qualification  manually  again.  Therefore, the
automatically data qualification procedure via a software
becomes more and more important and urgent.

After the data anomalies are identified, one may
employ available methods to repair the data anomalies.
From the result of a previous study [2], it seems possible
to repair short and moderate period of anomalies which
may be missing data or abnormal data.

One of the important issue of data analysis is how to

decompose a composite wave. In Ref.[2], the technique
of wave decomposition basing on the iterative filter of
Ref.[3-5] is employed as a fundamental tool to repair
data drop outs. After data repairing, is necessary to
inspect whether or not the main features are captured or
not. A classical method is to check the Fourier spectrum
and examines if the dominate frequency is shifted.
However, the Fourier spectrum is an overall property
which can not reflect local properties.

A powerful to extract local features of a data string
is the continuous wavelet transforms [6-9]. In Ref.[7,8]
Farge pointed that the Fourier spectrum reflects the
lumped information over the expansion range and can
not provide the local information. Unfortunately, there
are not much detailed information can be directly
obtained from the resulting wavelet coefficient plot.
From mathematical point of view, the wavelet transforms
employs the convolution integral is in some sense equal
to a projection method. However, a finite data string
cannot be perfectly expanded by the Morlet and related
transforms because the embedded kernel function
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eliminates the orthogonal property between eigen
functions. Consequently, the resulting wavelet coefficient
evaluated at a specific scale function is contaminated by
the effect of ignoring all the non-orthogonal functions
corresponding to other scale functions. Recently, the
continuous wavelet (Morlet) transform was enhanced by
using a band-passed data to evaluate the wavelet
coefficient rather using the original data [10,11]. It seems
that the band-passed data does reduce the contamination
to certain extend.

Tides around Taiwan result from shoaling effects of
tidal constituents in the Pacific Ocean propagated
westward to the continental shelf. According to the
harmonic analyses of tide data at Houbihu harbor in
southern coast of Taiwan, the Luni-solar Diurnal (K1)
and the Principle Solar Diurnal (O1) are the largest
diurnal tidal components, and the Principle Lunar (M2),
the Principle Solar (S2), the Larger Lunar Elliptic (N2)
and the Luni-solar Semidiurnal (K2) are the largest
semidiurnal tidal components. Besides, the monthly,
fortnightly, annual, semiannual and the long-term (18.61
years) variations of water level are also included. In
other words, the tide wave data involves complex
structure and is a good test case to examine the
performance of a data analysis tool.

In this study, the wok of Ref.[2] will be completed
by using the enhanced Morlet transform to check the
main features of the tide wave which involves short and
moderately long data missing periods.

2. ANALYSIS
The Iterative Filter Basing on Gaussian Smoothing
Assume that a discrete data string can be
approximated by

N
y(t) = ;bn cos(%] +Cp sin(%ﬁj Q)

In Ref.[5,6], it was proven that after applying the
Gaussian smoothing once, the resulting smoothed data
becomes

N

n=0 n
where a(o/4,)is the attenuation factor introduced by
the smoothing and can be proven numerically that
0<a(o/A,) ~exp[-272c2 1 22]1<1 (3)

If the removed high frequency part is denoted as y; and
apply the same smoothing to it to obtain the second
smoothed result as ¥, and repeat the same procedure to
obtain the m-th smoothed and high frequency part as
¥ and vy, , respectively. The following relation can be
built
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n=0 n

F(M) = Vo + Vo + oot Y = Y= Yim
N 4
:ZAnmalzbn cos[z—m}tcnsin[z—mﬂ )
&' Jn Jn

y(m) can be considered as the smoothed part and y,,
as the high frequency part. After substituting Eq.(3), the
attenuation factor of employing the Gaussian smoothing
method satisfies

Anmo =1-[L-exp{-27%c2122)]

0< Ao <1

()

Obviously, the accumulated smooth part is embedded by
a diffusive attenuation factor without phase error. It was
also proven in Ref.[5,6] that the transition region from
Arm.o = 0to 1 is much narrower than that of the original
a(o/4,) forasufficiently large iteration step m.
Suppose that all the waveforms within the range of
Aq <A< are insignificantly small. The above
mentioned iterative smoothing procedure can be an
effective filter to give both the low and high frequency
parts. The desired parameters o and number of
iteration steps m are solved by the following
simultaneous equations.
1-[1-exp(-27202 1 24)]™ = B, ©)
1-[l-exp(-27%52 1 2%)]™ = B,
where Bj;,B, =0.001, 0.999 are employed in this study.
Before the iterative filter is employed, one can use a
classical FFT algorithm to obtain a spectrum. After
inspecting both the original data and spectrum, he can
decide a suitable transition range defined by 4, and
Ac; to remove the non-sinusoidal and low frequency
part or to separate the composite wave into high and low
frequency parts. Moreover, the filter can also be
repeatedly employed to give a band-passed data string to
evaluate the time dependent spectrum within a specific
frequency band. For such a requirement, the spectrums
within  two transition zones i <i<al, and
A5 <2< 2L, in the high and low frequency sides of the
band, respectively, should not be seriously counted. In
fact, as comparing with the band-passed data obtained by
just dropping the spectrum associated to < H and
AL, < 2, these transition zones are employed to keep the
generality of the band-passed data string. The direct
method of dropping undesired modes from the Fourier
spectrum has the possibility of missing the information
reflecting the frequency variation of waveforms.
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Monotonic Cubic Interpolation Method
For the sake of simplicity and to employ the data
structure of a computer, it seems convenient to use the
simple FFT algorithm whose data points are exactly
equal to2™. Because a real data string may not have
exactly the number of integer powers of 2 in uniform
spacing form, a interpolation scheme proposed in
Ref.[12,13] should be employed to redistribute the
points.
Fast Fourier Transform Algorithm

The following FFT algorithm of Ref.[13] will be

employed in this study to find spectrum.
Data Repairing

According to Ref.[1], before performing the data
analysis, the data qualification should be made. One of
the qualifications is to check if there is data missing. If
there do have data missing, one can mark the missing
location with certain constants that are easily be
recognized by program.

In Ref.[2], it had been proven that to decompose the
original data string with data missing into several
waveforms is a useful procedure for data repairing. The
decomposition procedure is achieved by the iterative
filter. It had also been found that, if the data drop-outs
are at isolated points or only but a few continuous points,
the iteration can be done automatically.

For those missing data running over a long period,
the following strategy of Ref.[2] is restated below for the
sake of completeness. The waveform decomposed by the
iterative filter has abnormal regions around a long data
drop-out region. The region runs across a length
~ 2o (or one wavelength) next to the missing points.
Beyond the region, the resulting wave component data is
nearly not influenced. Consider the data drop-outs of a
beat wave shown in Fig.l. Basing on the above
mentioned fact, most data remote from the missing point
can be employed to be a reference data string. Around
the data drop-out region, the upper and lower envelopes
are constructed by connecting the local maximum and
minimum points via the above mentioned monotonic
cubic spline interpolation [3,4], respectively.

Next, these envelopes are employed to scale up the
wave data outside the drop-out region and the scaled data
is shown as thin line whose amplitude is almost constant.
Third, as shown in Fig.2, a segment of scaled wave data
within the range marked by two arrows is shift to the
drop-out region and is shown as dotted line. Fourth, the
shift data is scaled back as shown in Fig.3. Fifth, in the
drop-out region, this shifted data is chosen as the
repaired data component. Note that the original wave
component is different from the repaired one outside the
drop-out region because the original one is seriously
affected by the missing data.

The same procedure is applied to all wave
components except the highest frequency part which is
referred as noise. For those wave components with long
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enough wave length, the short period data drop-out
region is automatically repaired and need not to treat it.
Finally, the repaired data of all wave components are
summed up to replace the data drop-out points. However,
as the above mentioned discussion about Fig.3, the
repaired data may or may not consist with the existing
data. Therefore, the above procedure should be
repeatedly applied until the slopes at all end points of
every drop-out region are smooth.

Enhanced Morlet transforms

The following Morlet transform transfer a data string
y(t) into the wavelet coefficient.

W(az) =1/JEI°° y(w *[(x - )/ a]dx )
where yx(x):eiﬁxe""‘z’2 and a is called as the scale
function. If this transform is applied over a range
ay <a<ay, a two-dimensional wavelet coefficient plot is
obtained on the (a,z) plane. By applying Eq.(7) to
Eq.(1) it can concluded that the scale function a can be
closely related to the wavelength 4, such that the mode
with 4, =ax/3gives a maximum response. The work
of Ref.[10,11] performs a band-passed filter to the
original data and eventually gives the following wavelet
coefficient.

W(a,r,y)z\/éx
N a?  T? 27 6 i277 8
anexp —|i7+mj||:7n—g:| eXp|: An :|+ ( )
n=0

S cpeng| | 2o T ][22 BT | i2a

il 2 87%2 || 4y a An

where the factor T2/(872c%) added to a?/2 is result of
band-passed filter with o as the window size on
spectrum domain. If one perform the summation over all
the values of a’s, the inverse transform can be easily
obtained from the real part because the factor embedded
to the spectrum b, and c,in Eq.(8) are the same. If the
band-passed data is not added, the parameter a?/2 of the
exponential function shows that, in the high frequency
part (with a smallera), the contaminated bandwidth
running over a wider range of different modes (denoted
byn) than that in low frequency part (with a largera).
This property reflects the fact of violating the
completeness of the Weistrass approximation theorem
such that a expansion should starts from the lowest order
eigen function rather than just use a high order eigen
function.

In order to effectively reflect the original data’s
character, let
Kng =T/ Anq, kn=T/Ay, Knyy =T/ Aqyy ©)
The window size scale o takes the following value

o =c-max[[ky —kn_g |,[Knyg —kn [] (10)
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where ¢ =1o0r 2 is recommended.
3. RESULTS AND DISCUSSIONS

The tide data of the Houbihu harbor in Pin-Tung at
south Taiwan in the period of Jan.l through Dec.
31/2001 is employed to illustrate the proposed repairing
procedure. The data is the water level in mini-meter
recorded at every hour. It contains many isolated data
drop-out points, a three-hour missing period, a one day
drop-out, and a two day drop-out region. The Original
data is decomposed by a 10 stages filtering procedure. At
first =0.1m =230 is employed to eliminate the noise.
Then, < =90,30,10,5,3,1,0.4,0.25,0.125 and m =120 are
successively employed to generate waveforms for
repairing. In order to demonstrate the efficiency of data
repairing, the data after repairing is again drops for a
period of 2 or 9 days. That shown in Fig.4 is data missing
of 2 days. Because the data missing period is shorter than
o =5 days, the repaired waveform of Fig.4b closes to
the original data. In Figs.4c and 4d, because there are not
suitable sinusoidal data to be employed, the departure of
the repaired waveform from the original data is
significant. For such a situation, the neuro-network
method is a possible solution provided that there are
many available data base. The repaired data of Fig.4e
and 4f are reasonable, while that in Fig.4g has a large
departure. On the whole the over repaired data closes to
the original data reasonably.

For the case of artificially drop out of 9 days long,
the resulting repair is shown in Fig.5. The departure is
significantly large. From these two tests, the following
conclusions can drawn: (1) for those waveforms whose
data missing period much less than the damping
factor o (to remove the high frequency part), the iterative
filter can automatically recover the original data with
insignificant error; (2) for those waveforms with a
missing period less than 10 times of damping factor o,
the repairing is acceptable; (3) for those waveforms with
a missing period in the range of 10oto 205, the
repaired data has significant error; and (4) for a missing
period in the range longer than 20c, the repairing is
only but for reference but is better than nothing. In fact,
for the missing period longer than 10 o, one should try
another possible repairing method.

The result of repairing the original data with true
data missing is shown in Fig.6. In Fig.6a, the short
period data missing is repaired easily by the iterative
filter. For the one and two days data missing, shown in
Fig.6b and 6c, respectively, the two cycle repairing
seems reasonable.

In order to check whether the repaired data capture
the main features or not, the enhanced Morlet transform
is employed to generate the two-dimensional wavelet
coefficient plots. That shown in Fig is the resulting plot
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of the whole-day tide. Those for other tide waveforms
are not shown here because of length limitation. Fig.8
shows the spectrum of the repaired data but filtered by
o=4days and m=30. The resulting spectrum and
wavelet plots construct a good checking mechanism to
examine the effect of data repairing. It seems that the
data repairing do not introduce significant error to the
wavelet coefficient plot so that the main features are
clearly captured. Those shown in Table 1 through 4 are
the comparison between the standard waves and
estimated waves for the whole-day, half-day, 1/3 day, and
1/4 day tides, respectively. A careful inspection upon
these tables reveals that the present data repair method
works very well for this data string with a moderate data
missing period.
4. CONCLUSIONS

A complete procedure of data repairing employing
the iterative filter, monotonic cubic interpolation and a
simple FFT algorithm are successively constructed. The
test cases show that the method are suitable for a
moderate and small data missing period.
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heavy solid : wave to be repaired
dotted line : upper envelope
dashed line: lower envelope
1000 thin solid : scaled wave

|
115 120 125
Vi

Fig.1 The schematic diagram of data repairing. For the
central line: 0 denotes regular data, -50 is
drop-out point; dotted lines are upper and lower
envelopes; heavy line is the original decoupled
wave; thin solid line is the scaled wave.

1500

1250 =

dotted line : upper envelope
dashed line: lower envelope
thin solid : scaled wav

1000 e
heavy dotted : referenced wave moved
from x1 to x2

! ! |
115 120 125
Vi

Fig.2 Wave data in the region marked by two arrows are
moved to the data drop-out region and is shown as
dotted line.

Faeo P FAR, e &L
Kaohsiung, December,2005

L s s
115 120 125
Vi

Fig.3 The shifted data string is scaled back as the dotted
line.
(4a) (4b)

(4c) (4d)

Fig.4 The original and repaired data plots for 2 days data
drop-out, horizontal line is days and vertical is mm
height of wave: (a) original data; (b) 3 cycle
repaired data of the long waveform decoupled by
o=10and 5 days; (c) by o=5and 3 days; (d) by
oc=3 and 1 days; () o=1and 04; (f) =04
and 0.25; (g) o=0.25 and 0.125; and (h) The
comparison between original and repaired data
strings.
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- Habor of H
<
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Fig.5 The original data with 9 days long artificial data §
missing and repaired data.
(6a)
dotted : original data
2000 solid : repaired data by just applying the filter
(7b)
1500 Habor of Houbihu/Pi
Jan. 1st - Dec. 31th/ 2001 , tide wave data
i
(6b) :
E
Dashed line : original data
oo e e e
200
time(day)
Fig.7 The two-dimensional wavelet plot for the
U1-5 11'5.5 1;6 lll-lﬁ-;--;;-'l---:“;s 1;8 11'85 1;9 WhOIe-day tide Waveform: (a) real part pIOt and (b)
amplitude plot.
(6¢)

Dashed line : original data
dotted line  : the first cycle repaired data

s000f  solid line : the seonc cycle repaired data 150
Heobihu habor's spectrum
Jan.1-Dec.31,2001
"»E“mn—
E
o
5
< -
o
8 a0
Fig.6 The repaired data compares with original data: (a) I
short period data missing repaired by o =0.075; (b)
1 day data dropout, dotted line is the first cycle ol - - )
repaired and solid line is the second cycle result; wavelengththrs)

and (c) 2 days drop out with the same symbol as

| Fig.8 The resulting spectrum of repaired data filtered by
that in (b).

o =4 days.
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Table -1 The Whole-Day Tide Data Comparison
Exact
wave . Cal.A AL Avax  Amin A
001 22.306 22.36 .009~-.007 2.078 0.371 1.842
J1 23.1 23.06 .021~-.013 2.437 1.736 2.348
K1 23,935 23.92 .012~-.038 3.774 3.423 3.747
P1 24.066 24.03 .155~-.012 3.323 2.761 3.196
M1 24.86 24.81 .06~-.024 2.826 2.123 2.609
Ol 25819 2581 .003~-.061 3.714 3.101 3.645
Q1 26.868 26.85 .048~-.086 3.063 2.62 2.996
SIG1 27.848 27.83 .137~-.03 2.337 1.945 2.293
- 28.83 .04~-.044 2.022 1.676 1.989
ALP1 29.095 29.04 .015~-.002 2.048 1.178 1.915
Table -2 The Half-Day Tide Data Comparison

Exact Cal.

wave 1 1 AA Anax  Anin A

ETA2 11754 11.745 .003~-011 2101 1703 2.019
K2 11967 11.967 .002~-.006 3.176 2.756 3.042
S2 12 11.993 .009~-0006 3.437 3.019 3.398
T2 1201 12.02 .005~-.002 3.052 2.466 2.747
L2 1219 1219 .009 ~-.003 2.247 15 2074
LDA2 1222 12.225 .01~-.002 2257 1.869 216
M2 1242 12415 .002~-.001 3.841 3.526 3.836
NU2 12.626 12.619 .012~-.009 2.618 2.266 2.519
N2 12658 12.656 .011~-.004 3.12 2739 3.082
MU2 12.87 12.868 .001~-.011 249  2.07 2407
2N2 12905 12.898 .016~-.001 2.163 1.693 2.087
Table -3 The 1/3 Day Tide Data Comparison
wave exactA Cal. A AL Arax  Amin A
---  7.835 .001~-.003 1.264 0.684 1.18
SK3 7.992 7.984 .01~-.004 2.107 1.521 1.923
-~ 8.166 .006~-.004 2.168 1.75 2.12
MK3 8.177 8.177 .005~-.002 2.303 1.771 2.202
SO3 8.192 8.191 .008~-.001 2.071 1.532 1.957
M3 8.28 8.273 .006~-.001 2.125 1.545 2.018
--- 8.302 .001~-.001 1.541 1.12 1.455
---  8.335 .003~-.002 1.574 1.269 1.556
---  8.364 .005~-.003 1.784 1.078 1.387
MO3 8.386 8.387 .004~-.005 2.132 1.808 2.113
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Table -4 The 1/4 Day Tide Data Comparison
wave exact A Cal. 4 AL Anax  Amin A
SK4 5992 5.995 .002~-.001 1.795 0.904 1.584

S4 5999 6.004 .004~-.002 1.561 1.214 1.513
--- --- 6.014 .001~-.002 1.582 0.631 1.368
--- --- 6.029 .002~-.005 1.726 1.029 1.465
MK4 6.095 6.095 .005~-.002 1.781 1.315 1.674
MS4 6.103 6.102 .001~-.010 1.867 1.479 1.841
--- --- 6.146 .001~-.004 1.568 0.949 1.482
SN4 6.16 6.156 .002~-.003 1.674 1.069 1.513
--- --- 6.209 .001~-.004 2.023 1.514 1.9
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