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ABSTRACT

The simple Fast Fourier Transform (FFT) algorithm with a small spectrum error is employed to construct the
two-dimensional plot of the true short time Fourier transforms. Before the data string is treated by the FFT algorithm,
the iterative filter via the Gaussian smoothing is applied to remove the undesired non-sinusoidal part and those wave
components remote from the interested wave. The Fourier spectrum is evaluated in a window whose end points are
defined by zero crossing positions of the original data. The resulting spectrum is assumed to be valid at the central point
of the window. Consequently, a two-dimensional data set defined by these central points and spectrum is constructed.
This two-dimensional plot is a more direct approach than the Gabor transform, which has already been named as the
short time Fourier expansion. A test case examines the beat wave formed by 3 known sine waves and shows that the
zero crossing point can not be put at region where the approximate amplitude of the beat attains local minimum value.
Two test cases are employed to show the capability of capturing local properties of this new time-frequency analysis. It
seems that, because of the uncertainty of the time-frequency analysis via the Fourier series expansion and the
non-uniform window width, the resulting time-spectrum plot evaluated via a relative short window width arrangement
shows a faded character in spite of the high capability of capturing the local property. For a sufficiently large window
size, the plot shows a steady property but lose the ability of capturing local property.

Keywords: FFT with small error, Time Frequency Analysis.

1. INTRODUCTION

Because of the rapid development of computer
hardware and software, the capability of collecting huge
number of long data string increases rapidly. Generally, a
real data string frequently has a complex structure which
changes main characters rapidly. Consequently, the
classical Fourier spectrum can not fulfill the desire of
recognizing all the detailed information. In order to look
into the local property, both the wavelet and Gabor
transforms are widely applied as tools of the
time-frequency analysis [1,2]. Although both wavelet
and Gabor transforms have being extensively studied
from mathematical point of view, these methods are
approximate expansions rather than a exact mapping
procedure such as the Fourier spectrum. Therefore, it is
interesting to restudy the property of a true short time
Fourier transformation.

For a real data string, the Fourier spectrum
evaluated by the current Fourier expansion may involve
significant low frequency error because of the

non-periodic condition at two ends. The first step to
remove the error, in a previous study [3], the cubic
moving least squares method is employed to remove
non-sinusoidal and low frequency parts. Second, two
zero crossing points next to two ends are fixed by a
interpolation procedure. Third, a modification upon the
monotonic cubic spline interpolation method [4] was
made and it was employed to redistribute data point with
the specification that total number of points is equal to an
2™and at least 2 new points are embedded into the
original data window. Finally, before the FFT algorithm
is employed, an odd function extension of the data string
is made. The resulting data string has the periodicity of
the data and all resolved derivatives.

In two following studies [5,6], the iterative filter
(basing on the Gaussian smoothing and cubic moving
least squares method) without phase error was proposed.
If wave components of a data string have a obvious gap
on spectrum domain, the filter can effectively give the
low and high frequency part. In other words, the cubic
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moving least squares method employed in Ref.[3] may
leave certain low frequency wave component on the
sinusoidal part.

This study will employ the iterative filter of Ref.[5,6]
to remove the non-sinusoidal and low frequency parts.
Moreover, because of the FFT algorithm gives a
spectrum with small spectrum error, it will be employed
to obtain a true short time Fourier series expansion and
develop a time-spectrum plot. It should be noted that, in
general, the original combination of non-sinusoidal and
low frequency parts are not known. As a consequently,
the separated high frequency part may be incorrect to
certain degree and will be discussed in this study too.

2. ANALYSIS
The Iterative Filter Basing on Gaussian Smoothing
Assume that a discrete data string can be
approximated by

N
y(t) = nzz(;bn cos(%] +¢Cp, sin(%ﬁj Q)

In Ref.[5,6], it was proven that after applying the
Gaussian smoothing once, the resulting smoothed data
becomes

N
yi(t) = z a(o ! A,){b, cos(i—:tj +c, sir{i_”t]} @

n=0 n
where a(o/4,)is the attenuation factor introduced by
the smoothing and can be proven numerically that
0<a(o/A,) ~exp[-272c2 1 22]1<1 (3)

If the removed high frequency part is denoted as y; and
apply the same smoothing to it to obtain the second
smoothed result as ¥, and repeat the same procedure to
obtain the m-th smoothed and high frequency part as
¥ and vy, , respectively. The following relation can be
built

N
Yim = nZ:;[l— a(a//ln)]m{bn cos[i—?j +Cp, sin[i—?ﬂ

V(M) =i+ T2+t Iy =Y = Yim
N 4
:ZAnm({bn cos(z—ﬁj+cnsin[2—mﬂ )
n=0 o n n

y(m) can be considered as the smoothed part and vy,
as the high frequency part. After substituting Eq.(3), the
attenuation factor of employing the Gaussian smoothing
method satisfies

Anmo =1-[1-exp{-2725%12)]

0< Ao <1

()

Obviously, the accumulated smooth part is embedded by
a diffusive attenuation factor without phase error. It was
also proven in Ref.[5,6] that the transition region from
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Aqmo = 0to 1 is much narrower than that of the original
a(o/4,) forasufficiently large iteration step m .

Suppose that all the waveforms within the range of
A <A<, are insignificantly small. The above
mentioned iterative smoothing procedure can be an
effective filter to give both the low and high frequency
parts. The desired parameters o and number of
iteration steps m are solved by the following
simultaneous equations.
1-[l-exp(-27%0% 1 23)]" = B,
1-[1-exp(-27%02 1 2%)]™ = B,
where B;,B, =0.01, 0.99 are employed in this study.

Before the FFT algorithm of Ref.[3] is employed.
One can use a classical FFT algorithm to obtain a
spectrum. After inspecting both the original data and
spectrum, he can decide a suitable transition range
defined by 44 and A, to remove the non-sinusoidal
and low frequency part. In this study, the filter is also
repeatedly employed to give a band-passed data string to
evaluate the time dependent spectrum within a specific
frequency band. For such a requirement, the spectrums
within  two transition zones AH <i<af, and
A5 <2< 2L, in the high and low frequency sides of the
band, respectively, should not be seriously counted. In
fact, as comparing with the band-passed data obtained by
just dropping the spectrum associated to 1< AH and
AL, < 4, these transition zones are employed to keep the
generality of the band-passed data string. The direct
method of dropping undesired modes from the Fourier
spectrum has the possibility of missing the information
reflecting the frequency variation of waveforms.
Monotonic Cubic Interpolation Method

For the sake of simplicity and to employ the data
structure of a computer, it seems convenient to use the
simple FFT algorithm whose data points are exactly
equal to2™. Because a real data string may not have
exactly the number of integer powers of 2 in uniform
spacing form, a interpolation scheme should be
employed to redistribute the points. In Ref.[4], a Hermite
cubic interpolation between points (x;, %;.4) is employed.

(6)

y(x) = c3(x=x;)% +Co (x = X})? + €1 (x = X;) + Cg
Co = Yi\ C1 = Viv Sisws2 = (Viss = ¥i) M(Xiss = %) @

¢, = 3Sivir2 =2Yi = VYin . _ Yi* Vi« = 2Sia
Xis1 = Xi (Xisg —%i)?

C3

In order to avoid spurious oscillation, Ref.[3] modified
the M3A interpolation of Ref.[4] to give necessary
limiter to slopes y;,yi,; as
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Vi —sgn(ti)min{%‘ Pi_1/20%) + pil+l/2(xi)‘:max{k I'si |:%|ti H

Pi-1/20%) =Si-1/2 + diog2(% — Xig),
Pia1r2(%) = Sis1r2 + dias2 (6 = Xiu1),
ti =minmod[p;_1,2(%), Pls1/2(%) (8)
dis1/2 = minmod[d;, di.1 ]
di = (Siv1/2 = Si-1/2) /(X1 = Xi2a), §i = minmod[si_y/ 2,541/
k=3, if [Sisys2 P>Sicar2 | OF [Sima/2 P>ISisay2 |

>4, otherwise

At two ends, the Hyunk boundary condition will be

employed [4]. As will be discussed later, this cubic

interpolation might introduce too much artificial
modification.

Fast Fourier Transform Algorithm
In terms of the iterative filter, the FFT algorithm of

Ref.[3] is modified to be the following steps:

1. Employ the iterative filter to remove the
non-sinusoidal and low frequency parts.

2. For the remaining high frequency part, choose zero
crossing points at two ends. Use an interpolation
method to find 0 points there.

3. Use the modified monotonic cubic interpolation of
Ref.[3] to regenerate the data so that total number of
points are of 2™. For a smooth data string, more
than one point should be located in the range
between two successive data points of the original
data string to reduce interpolation error. For an
oscillatory data such as the turbulent data taken by
an insufficient sampling rate, more than 4 points
should be considered.

4. Perform an odd function mapping with respect to
one end so that the final data point is doubled.

5. Asimple and fast Fourier sine transform algorithm is
employed to generate the desired spectrum.

Since the values are chosen at two ends, the penalty of

shrinking the available data range can not be avoided.

Note that the odd function mapping makes the perfect

periodicity of the resulting data string.

The True Short Time Fourier Transforms
The authors believe that, if the above mentioned

FFT algorithm is not employed and if the non-sinusoidal

part is not removed, it is not easy to construct a true short

time Fourier transform. The possible reason comes from
the non-periodicity of the data string. This study will
employ the following strategy to construct the short time

Fourier transforms.

1. ldentify all the zero crossing points, say Xi0 ’s, in
terms of a searching procedure together with a
suitable interpolation method.

2. After assign a proper window size AS , starting
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from the left end, define a series of successive
windows T; whose left end points are x?. The
right end point of window T; is chosen at x?

i+k
k>1 and satisfies the  criterion  that
“xﬂk—x?‘—As‘ is minimum with respect to all

positive integer k .

3. Perform the proposed FFT algorithm to evaluate the
spectrum for each windowT;. Assume the resulting
spectrum is valid at central point x = (x? +x%,)/2.
The spectrum is interpreted by the frequency in
terms of the following equation.

fo = /120 — ) (@)
where N is the mode number and the factor 2 in
the denominator results from the odd function
mapping procedure.

Note that, for a real data string, the window size

x%, —x? differs from each other and the resulting time

frequency spectrum shows an oscillatory behavior

obviously whenever the window size is not wide enough
as will be shown below.

The Uncertainty Properties of Fourier Spectrum [7]
Define operators on time and frequency domains,

respectively as T =t and F =-j(d/dt) on time domain

where j=+-1. For a signal Ae1t | F . (Ae1?t) = phe it
where @ =24f . The commutation between these two
operators is again an operator defined as

MFI=TF-FT=tCi5)-CiDi=1  (0)

Since the commutation is not zero, time and frequency
do not commute. Thus, time and frequency cannot be
measured independently and there is uncertainty between
them which is

At-Ao > 0.5[([T, F])| = 0.5(j)| =05 (11)

In other words, if the short time Fourier transform is
employed to resolve the local variation of spectrum with
respect to time, the resolution is limited. In other words,
a small window width (corresponding to a small At
and good temporal resolution of local property), the
accuracy of frequency is will be bad. On the other hand,
a large widow width with worse temporal resolution
leads to an accurate frequency resolution. It is well
known that, for the Gabor transform, if a large window
size is employed, the resulting Gabor coefficient plot is
called the narrowband spectrogram which is used for
good frequency resolution. On the other hand, the
wideband spectrogram uses a small window size which
allows good temporal resolution of signals. We will
employ this principle to examine the property of the
present short time Fourier transforms.
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3. RESULTS AND DISCUSSIONS
In Ref.[3], there is not example with known function
and exact spectrum to demonstrate the merit of the
proposed FFT algorithm. For the sake of completeness,
the following function is employed to explicitly examine
the resulting error of the proposed FFT algorithm.

y(x) = ¥(x) + y1(x)

Y(X) =1+ 2% + X2/ 2+ 0.3exp[~0.05x?]sin(6X)

y1(X) = 0.3exp[~0.5X2](1 + 2X + X?)sin(327X)
+0.2sin(567X) + 0.4sin(1007X)

(12)

where X = x/10 , y(x) is the composite waveform (shown
as the thin solid line in Fig.l), ¥(x) involves a
non-sinusoidal and low frequency part (dotted line) and
y1(x) is composed of two simple short waves and a
complicated short wave (shown as thin solid line around
x=0). At first, the data is expressed in a uniform
spacing in the range of 0 < x <10 so that the total number
of point is 8192+1. The first 8192 points are employed to
find the spectrum via a simple FFT program. After apply
the iterative filter, the estimated smooth part is shown as
long dashed line, and the high frequency part is the
dashed line. Obviously, the estimated smooth part
deviates from the given smooth part and their difference
becomes significant around two ends. Figure.2 shows
three spectrums: the thin solid line with diamond symbol
is the spectrum of y(x), the heavy solid line with delta
symbol is the spectrum of y;(x) plus an odd function
mapping with respect to the point at x=10 so that the
total width is doubled. The line with gradient symbol is
the spectrum of the estimated high frequency part via the
iterative filter. The low frequency error of y(x) ’s
spectrum is induced by both the non-sinusoidal part
of y(x) and the non-periodic condition at two ends. If
y(x) is removed from y(x), the resulting spectrum does
not involve the non-sinusoidal part and the error induced
by y(10) # y(0) . The exact spectrum is achieved because
y(0)=y@0) and all the available conditions of
derivatives at two ends, say y'(0)=y'(10),
y"(0) = y"(10) ,... etc. are satisfied. It is seen that the
estimated spectrum captures all the dominate modes. The
small disagreement comes from the deviation of
estimated smooth part from the original smooth part
around two ends. Nevertheless, this test case shows that
the present FFT algorithm does significantly reduce the
spectrum error as compare with the result of classical
FFT algorithm.

The authors had performed many test studies the
results showed that, if the composite wave forms a beat,
the resulting Fourier spectrum converges slowly for an
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improper choice of end points. In order to demonstrate
such property, the following composite wave is examined
as a first test case.

. 467X . 507 .
X) =sin ——+0.9sin —— + 0.1sin(27x
y(x) 24 24 (2m) (13)

0 < x <365 days

The detailed plot the original data is shown in Fig.3
which clearly in form of beat wave. Figures. 4 show two
pictures of local short time Fourier spectrum whose
approximate segment intervals are 30 and 225 days,
respectively. From these two figures, it is clear that the
local short time Fourier series evaluated by end points
located at successive zero crossing points involves
certain degree of error. For convenient, the line
connecting local maximum points are considered as the
upper limiting envelope and that formed by the local
minimum points is designed as the lower limiting
envelope. The approximate radius is thus defined by the
vertical distance between lower and upper limiting
envelopes. A careful inspection upon Figs.3 and 4 reveals
that the data around r ~minimum is not of regular shape
and the spectrums corresponding to end points around
these regions shown a local splitting property. For a short
expansion period of 30 days, the error is rather serious
and even shows a multiple solution. According to the
uncertainty principle of Eq.(11), a long expansion period
will give a small spectrum error. However, the result of
Fig.4b which uses the expansion range of 225 days, the
multiple solution still present. In other words, the zero
crossing point around minimum radius will introduce a
maximum spectrum error. Suppose the end points are
only located around r=~ maximum, the resulting
spectrums with periods of 32 and 96 days are shown in
Figs.5a and 5b, respectively. This test case clearly shows
that, one has better to choose end points at zero crossing
points where the composite wave has a regular and
smooth shape. Any small wavy shape around a zero
crossing point will lead to spectrum error.

The second test case is the tide wave data of Hobihu
habor at Pin-Dong (in south part of Taiwan). The data
range runs from January 1/2001 to December 31/2001.
Figure.6a shows the original data (around sea level =
1000 mm) and the whole day tide data (around sea level
= 0 mm). The latter wave is obtained by employing the
iterative filter with m =30 iterations and o =4 days to
remove the low frequency part and m =200 iterations
and o =0.35days to exclude the high frequency part.
The resulting whole day tide wave data shows a beat
wave of period 15 days which is about half of a lunar
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month as shown in the detailed plot of Fig.6b. This is a
practical data with a complicated composite beat wave
and is a band-passed data filtered from the original data.
The resulting spectrum is shown in Fig.7.

In Fig.6, the data around regions of minimum radius
is not a regular variation and is even more complicated
than that shown in Fig3. According to the conclusion of
the previous test case, it is better to exclude those
spectrum estimated by the segments whose end points
located around this range. With the restriction of this rule,
a series of two-dimensional amplitude plots of wave
width vs. time are shown in Fig.8 with different window
size. Because of many waves combining together, the
window sizes (determined by zero-crossing points) are
not uniform. For the sake of easy plotting the result, the
data in wvertical direction is redistributed via linear
interpolation to smooth the result. These spectrums show
that the increase of expansion range does decrease the
spectrum error and the limit is the spectrum shown in
Fig.7. A first glance upon Fig.6b shows that the upper
and lower limiting envelopes of the beat wave is not
smooth. Therefore, the resulting dominate modes are not
in form of a perfectly shaped impulses. In other words,
resulting bands of dominate modes show a faded
character.

The third test case is the voice data of “hello” of an 10
years old child. The data and spectrum are shown in
Fig.9a and 9b, respectively. In this case the band passed
filter is obtained by two stages: o =1 second, m=1
iteration to remove low frequency part and
o =0.001seconds, m =200 iterations to remove the high
frequency part. In Fig.10a-d, the approximate window
widths are 0.016, 0.02, 0.031, and 0.061 seconds,
respectively. For a speech signal, Fig.10 can be
considered as a series of spectrograms with different
window sizes that are corresponding to different window
widths. A careful inspection upon all the figures of
Fig.10 reveals that the spectrogram with window width
0.02 second (Fig.9b) gives a best resolution. The
spectrogram with window width 0.016 second (Fig.10a)
gives an excellent resolution of rapid frequency changing
part but the band width of the constant frequency part is
bigger than that of Fig.10b. On the other hand, those use
window widths 0.031 and 0.062 seconds obtain a good
resolution at frequency constant part but show a serious
dilution of band resolution in rapid frequency changing
part. In other words, this test case shows that the present
short time Fourier transforms follows the uncertainty
principle of Ref.[7].
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4. CONCLUSIONS

The simple strategy of FFT algorithm with small
spectrum error and the iterative filter are employed to
generate a true short time Fourier transforms. A test case
of three known sine waves with fixed frequency is
employed to examine the effect of put two ends points at
different location of a beat wave. The result shows that
one should not choose zero crossing points around which
approximate radius of the beat attains minimum value. A
tide wave data is employed the capability of resolving
temporal behavior of a composite wave with a short
widow width. The other test case shows that the present
transform is restricted by the uncertainty principle of
most time-frequency analysis tools. It is believed that
this short time Fourier transforms is an convenient tool to
examine a time series data with complex structure.
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thin red: original data
dotted: smooth part
thin green : sinusoldal part
dashed : estimated smooth part
ed : estimated sinuscidal part
6 @ =1, 30 iterations

Fig.1 The test function: original composite wave is thin solid
line, given smooth part is the dotted line; given high
frequency part is thin solid line around x(t) =0 ; the long
dashed line is the smooth part estimated by the iterative
filter with o =1,m=230; and the dashed line around
x(t) =0 is the estimated high frequency part.

_ o= 1, 30 iteratiol
sl

gradient = spectrum of sinuscidal part
edd function mapping

05 - i

3
freq

Fig.2 The resulting spectrums: diamond symbol is the spectrum
evaluated from y(x) ;delta symbol is the exact spectrum;
and the gradient symbol is the spectrum estimated by the
high frequency part of Fig.1.

251 y= sin(237 x/24) +0.9%sin(24.5 1 x/24) +0.1sin(2n X)

2k

=

3%me
Fig.3 The detailed plot of the test function of Eq.(13).
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Fig.5 The resulting spectrums: (a) Tigtgl = 32 days and (b)
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(6b) (8d)
1000 - Hobihu Harbor {Pintong, Taiwan) tide wave
2004/01/01-2001/12/31
_ detailed plot of the whole day tide data
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Fig.6 The tide wave data of Hobihu habor (Pingtung, Taiwan):

(a) the upper line around 1000 mm is the original data; the

line around Omm is the whole day tide data (filtered by

o =4, 30 iterations and o = 0.35, 200 iterations) and (b)

the detailed plot of the whole day tide data.

Spectrum of whole day tide

o, L

20
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Fig. 7 The spectrum of the whole day tide data of Fig.6 of
Fig.6.
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Fig.8The two-dimensional amplitude plots of short time
Fourier transform with different interval sizes, evaluated by
the band-passed data of Fig.6: (a) width ~ 30 days; (b) 45
days; (c) 60 days; (d) 75 days; (e) 90 days; and (f) 120 days.
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Fig.9 The data and spectrum of three voice “hello”: (a) the raw

data of voice “hello”; and (b) the spectrum.

(10a)

Hellod2, short time Fourler series, xt is about 0.016 sec
sigma = 1sec (1t} & 0.001sec(200 its)
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(10b)

Hello02, short time Fourier series, xt is about 0.020 sec
sigma = 1sec (1it) & 0.001sec{200 its)
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(10c)

Hello02, short time Fourier series, xt is about 0.031 sec
sigma = 1sec (1it) & 0.001sec{200 its)
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Hello02, short time Fourier series, xt is about 0.061 sec
sigma = 1sec (1it) & 0.001sec(200 its)
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Fig.10 The two-dimensional amplitude plots of low frequency
part of the voice “hello”: (a) interval length is about 0.016
seconds; (b) 0.02 seconds; (c) 0.031 seconds; and (d)
0.061 seconds. The band passed data is generated by steps:
o=1,m=1 to remove low frequency part and
o =0.001seconds, m = 200 iterations to remove the high
frequency part.
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