
                     THE 6TH ASIAN COMPUTAITIONAL FLUID DYNAMICS CONFERENCE 
                                                                                     TAIWAN, AUGUST 23~AUGUST 27,  2005 

Paper number n n-1

 
The Enhanced Morlet Transform via Iterative Filter                                     

to Study Turbulent Data Strings 
 

Y.-N.Jeng 1 , C.-T. Chen2 and  Y.-C. Cheng 3 

 
1. Department of Aeronautics and Astronautic, National Cheng-Kung University, Tainan, Taiwan 

z6208016@email.ncku.edu.tw 
2. Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan, Taiwan 

3. Department of Electrical Engnieering,  National Taiwan  University, Taipei, Taiwan 
 

 
 Corresponding author Y.-N. Jeng 

 
Abstract 

 
The function of the continuous wavelet (Morlet) transform is enhanced by adding a windowed 

spectrum via the iterative filter corresponding to the scale function. The Jeng, Huang and Chen 

iterative filter is properly employed so that the windowing procedure on the spectrum domain can be 

accurately done. The bandwidth of the resulting two-dimensional wavelet coefficient plot of a single 

sine function is narrower than that generated by the original Morlet transform. Subsequently, the 

visibility of the wavelet coefficient plot of several waves with frequencies closing to each other is 

significantly improved. The application of the proposed wavelet transform to the velocity data string 

of a low speed turbulent wake flow after a blunt body clearly shows many details which are not known 

before. On the resulting wavelet coefficient plots, many frequency splitting and merging procedures 

between waves can be easily captured. It seems that the present method might be considered as a well 

organized validation tool to compare the direct numerical simulation and corresponding experimental 

data. 
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1. Introduction 

 

    The study upon a turbulent flow field is seriously restricted by the fact that there is not effective tool 

to look into the details. In spite of the fact that many turbulent data can be easily and effectively 

collected, people can only calculate the overall Fourier spectrum, turbulent kinetic energy, and a few 

other lumped properties. Together with results of the Direction Numerical Simulation (DNS) and flow 

visualization, people do grasp many physical insights. However, precise interpretation of the effect of 

numerical error upon a DNS data is still an open and difficult issue. The development of flow 

visualization is still far away from the stage of clearly providing detailed information of a turbulent 

flow field. As a consequence, people can only understand a turbulent flow field to a limited extend. 
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     As the continuous wavelet transform was introduced to study turbulent flow [1-4], many studies 

followed up [5-13] because they agreed with the view point of Farge that the Morlet transform can 

provide the local information of spectrum. Unfortunately, there are not much detailed information can 

be directly obtained from the resulting wavelet coefficient plot. Therefore, people have to employ 

other techniques to extract desired information from the resulting wavelet coefficient plot. In fact, a 

continuous wavelet transform is a generalized short time Fourier series expansion whose visibility is 

deteriorated by the present of non-periodic and non-sinusoidal parts. Recently, the present authors [14] 

used a simple fast Fourier transform with small low frequency error to find the spectrum of the data 

string provided that the non-sinusoidal and low frequency parts are excluded by the iterative filter of 

Ref.[15]. Then, the spectrum is employed to give a band-passed data string before the Morlet 

transform is calculated. The resulting two-dimensional wavelet coefficient plot has a much better 

visibility than that of the original Morlet transform. However, the spectrum is evaluated in terms of the 

high frequency part of the whole data string such that the local property is deteriorated. Consequently, 

if the bandwidth of the band-passed filter become more and more thin, the resulting two-dimensional 

wavelet coefficient shrinks to be the Fourier spectrum which does not reflect any local behaviour. In 

this study, the band-passed data is given by employing the iterative filter of Ref.[15]. Subsequently, 

the iterative filter will also be employed to prevent the Morlet transform from collecting too many 

information. Moreover, the local behaviour of the iterative filter will prevent the drawback of the 

enhanced Morlet transform proposed in Ref.[14]. 

 

2. Theoretical Analysis 

    Assume that a discrete data string can be approximated by 
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In Ref.[14], it was proven that after applying the Gaussian smoothing once, the resulting smoothed 

data becomes 
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where )/( na λσ is the attenuation factor introduced by the smoothing and can be proven numerically 

that 

1]/2exp[)/(0 222 ≤−≈≤ nna λσπλσ                             (3) 

If the removed high frequency part is denoted as '
1y  and apply the same smoothing to it to obtain the 

second smoothed result as 2y  and repeat the same procedure to obtain the −m th smoothed and high 

frequency part as my and '
my , respectively. The following relation can be built 
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)(my  can be considered as the smoothed part and '
my  as the high frequency part. It was proven in 

Ref.[15] that the transition region from })]/(1[1{ m
na λσ−−  = 0 to 1 is much narrower than that of 

the original )/( na λσ . It should be noted that, like the property given by the original Gaussian 

smoothing method, the smoothed part )(my preserves the local behaviour of the original data to certain 

extend. 

    The following Morlet transform transfer a data string )(ty  into the wavelet coefficient. 

∫
−

=
∞

∞−
dx

a
xxy

a
aW )(*)(1),( τψτ                             (5) 

where 2/6
2

)( xxi eex −=ψ  and a  is called as the scale function. If this transform is applied over a 

range 10 aaa ≤≤ , a two-dimensional wavelet coefficient plot is obtained on the ),( τa  plane. By 

applying Eq.(5) to Eq.(1), it can be easily shown that  

∑ ⎥
⎦

⎤
⎢
⎣

⎡
−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−+

∑ ⎥
⎦

⎤
⎢
⎣

⎡
+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−≈

=

=

N

n nnn
n

N

n nnn
n

i
a

aac

i
a

aabaW

0

22

0

22

2cos2sin62
2

exp
2

2sin2cos62
2

exp
2

),(

λ
πτ

λ
πτ

λ
ππ

λ
πτ

λ
πτ

λ
ππτ

          (6) 

A careful inspection upon this formula reveals that the original Morlet transform collects too much 

information into a single line with =a constant. For example, consider a test function of )8sin( ty π= , 

200 ≤≤ t the response of ),( τaW  at 0625.9=τ  is shown as the dotted line in Fig.1. It seems that, 

at all the positions of a  in the range of 7.14.0 ≤≤ aλ (say, 5.2/7.0 << aλ  in the figure), ),( τaW  

gives a non-zero response. In an ideal situation, it would be better to obtain a delta form response. 

However, as noted in Ref.[16,17], there is an uncertainty range, say 
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where 2
tσ and 2

ωσ  are the uncertain variances in time and frequency domain, and λππω /22 == f . 

In other words, if one shrink the information in the −a direction into a delta function, the uncertainty 

in time direction will be infinitely large. In order to obtain a good resolution in both time and 

frequency directions, a finite bandwidth in −a direction. 

 

     In order to shrink the range of collection information, before evaluating the wavelet coefficient at a 

given a  value. The wavelength with a maximum response is considered as the central frequency. The 

iterative filter is then iterative searched to find a best fit. For example, Fig.1 is the result of applying 

the iterative filter with 535.0/ =aσ  and 100 iteration steps. In the figure, the dashed line is the 

response of the iterative filter which is an one-sided filter only. The overall response shown as the 

solid line is the product between the original factor and that introduced by the filter. This filter 

parameter makes the maximum overall response of the original transform is not changed. Fig.2a is the 

result of using two-steps filter, with 100 iterations and 535.0=Lσ  to cut the long wave part and 

LH σσ *95.0=  to cut the short wave part. It is seen that the overall response gives a non-zero 

response shorter than that of the original Morlet transform. Since the overall response is different from 

the maximum response of the Morlet transform, it is further scaled by a proper factor to obtain the a 

coincided overall response as shown in Fig.2b. Figure 3 shows the necessary data of ),( mLσ  to 

achieve the coincided maximum overall response with the original Morlet transform, where m  is the 

necessary iteration cycles. For the sake of clarity, three different results of employing different σ ’s 

(and hence m ’s) to provide different windowing sizes are shown in Fig.4. A careful inspection upon 

Figs.3 and 4 reveals that a narrower window size should be equipped with a larger number of iteration 

of the filter and the increment is in an exponential form.  

 

Results and Discussions 

 

     Now the experimental data of Ref.[10] is employed to demonstrate the present enhanced wavelet 

transform. The −u velocity data at d5 and d3 downstream location along the centerline of the blunt 

body’s wake region is examined (see Fig.5a), respectively, where mm32=d is the width of the blunt 

body and dRe =16500 is employed. The location of d5  is at the downstream point after the wake 

region (ended at about 2 )d . The removed smoothed part corresponding to this data string is shown in 

Fig.5b. It is obviously that if this part is not removed, the corresponding spectrums will involve their 

contribution over the whole spectrum domain which introduces certain error. The resulting spectrum is 

shown in Fig.6. From this spectrum, it is obviously seen that dominate and three sub-harmonic modes 

can be easily captured. Note that, if the non-periodic part is not removed, the second and third the sub-
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harmonic modes can not be easily captured. Generally, the third mode might be ignored because it is 

interfered by the low frequency error. 

 

      The wavelet coefficient plots generated by the original Morlet transform are shown in Fig.7 and 

that generated by the present improved transform are shown in Fig.8, respectively. In Fig.7, both the 

amplitude (often called as wavelet energy) and real part plots can not provide much information. On 

the other hand, the present method can give many information of how the dominate and sub-harmonic 

modes persist. Both the energy (amplitude) and real part of Fig.8 show that the vortex shedding 

information dx 5.0= presents in a piecewise manner which can be seen along the line of 0133.0=a  

(≈72 Hz and 305.0/St 0 == Ufd ). Many sub-harmonic modes also present in the same piecewise 

manner. Moreover, the frequency splitting and merging can be seen here and there between these 

dominate and sub-harmonic modes. It seems that from the real part plot one can get a more direct 

feeling upon the feature than that of the amplitude plot because the phase information give us a 

direction impression about the flow oscillation. The result shown in Fig.8 reflects that the vortex 

shedding does not give a perfect continuous spectrum line around the 0133.0=a  line. This is true 

because a vortex shedding from the inclined surface of the blunt body shown in Fig.3a can not always 

generate a regular and well structured vortex as can be seen from the flow visualization plot of 

Ref.[10]. Moreover, the high order sub-harmonic modes can not exactly persist their frequencies at 

exactly the integer multiples of the dominate frequency, say integer multiples of 0133.0=a . Part of 

the information of the energy cascade can be found by examining many left and right inclined waves 

between the dominate and the first sub-harmonic modes of Fig.8.  

 

    Since the experimental facilities does not involve a high speed camera and flow visualization via 

laser sheet splitting, the flow structure corresponding to all the details of frequency splitting and 

merging between waves of different wavelengths can not be exactly addressed. It seems that 

systematic restudies about this and many other turbulent flow fields are necessary so that the physics 

of the frequency splitting and merging can be correctly captured. 

 

    After one can clearly understand most physical meanings of the frequency splitting, the present 

method can also be employed as a code validation of a Direct Numerical Simulation (DNS) code. 

Today it is not easy to identify the role of numerical error in a DNS program. If both experimental data 

string measured at a point and the corresponding DNS result are available, the present method provide 

a tool to compare the features of them such that their error can be essentially identified. 

 

Conclusions 
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A new tool to inspect a complicated data string of a turbulent flow field was successfully 

developed by enhancing the Morlet transform. The visibility of the resulting wavelet coefficient plot 

along the frequency direction is significantly recovered by employing an iterative filter to remove the 

low frequency error of the Fourier spectrum and exclude extra-information folded. Many resulting 

turbulent flow details on the spectrum domain are first seen so that they can only be partially 

explained. It seems that systematic and well organized experiments are necessary to obtain a fully 

understanding about a turbulent flow field. Besides, further developments upon many fields related to 

complicated data strings can be started by employing the present modifications upon the Fourier 

spectrum and continuous wavelet transform. A series of study upon brain, neural, and earth quake 

signals are on the way. 
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Fig.1 Responses of a single sine wave, 200),8sin( ≤≤ ttπ , at 0625.9=t : dotted line is the original Morlet 

transform, dashed line is the single iterative filter with 100,535.0 == mσ , and solid line is overall 
response fo the Morlet transform plus the filter. 

 
(2a)                                                                                            (2b)  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.2 Responses of a single sine wave, 200),8sin( ≤≤ ttπ , at 0625.9=t , the dotted line is the original 

Morlet transform, dashed line is the two-steps iterative filter with 100,95.0,535.0 === mLHL σσσ , 
and solid line is overall response of the Morlet transform plus the filter: (a) non-scaled overall response; and 
(b) scaled overall response. 
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Fig.3 The necessary parameters of the iterative filter must be embedded into the Morlet transform so that the 

maximum factor is not changed. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.4 The responses of the original Morlet transform (solid line) and the enhanced transform embedded with the 

iterative filter with different parameters: long dashed line is the result of using 100,535.0 == mσ , 
dashed line is that of 400,605.0 == mσ , and the dotted line is that of 1000,650.0 == mσ , 

 
(5a)                                                                                                              
 
                                                     
 
 
(5b) 

 
 
 
 
 
 

 
Fig.5 The removed smoothed and non-periodic part of the original data strings at : (5a) schematic diagram and 

(5b) dx 5= , respectively. 
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Fig.6 The spectrum corresponding to Fig.5.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.7 The results of employing the original Morlet transform, (a) top: the data without smoothed part; (b) the 

amplitude plot; and (c) the real part plot. 
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Fig.8 The results of employing the enhanced Morlet transform, (a) top: the data without smoothed part; (b) the 

amplitude plot; and (c) the real part plot. 
 


