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ABSTRACT

A local estimating algorithm of evaluating local probability density function is proposed
by embedding the Gaussian kernel to the counting of occurrence frequencies. The random
number generator of the Micro-Soft FORTRAN package (F-77), say the RANDOM

_NUMBER(x) subroutine, is employed to produce pseudo- random number. Numerical tests
show that, if the Gaussian kernel factor is large enough, local estimates converge to fixed
density function distributions. Moreover, the local probability density function’s variation of a
random data string composed of two different distributions is captured by the present method.
It is believed that, if a true random number generator is employed or a smoothing procedure
upon the probability density function is employed, the convergent Gaussian kernel factor will

be significantly reduced.
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INTRODUCTION

Because of the development of

computer technologies, it was predicted that,

about 60 years later, a single computer’s
physical and hard disk memories might be
larger than the total memories of the whole
living beings of the earth. In other words,
the computing resource might increase to a
practical level that many compli- cated
problems can be analyzed in future. Simu-
Itaneously, the related technologies will
produce significantly large amount of data
in which one part of data might require
sophisticated analysis. To treat them
accurately, reasonable methods should be
fully automatic. Unfortunately, most of
present available methods of data analysis
heavily rely on artificial techniques.
Therefore, it is reasonable to search
fundamental techniques for automatic data
analysis.

An automatic data analysis method
might be divided into 4 stages: separates
data into the deterministic and random parts
via robust estimation [1-5]; decomposes the
deterministic part into sinusoidal and

local probability density function estimation, Gaussian kernel function,

non-sinusoidal part and the former is further
decomposed into single waves [6-9];
examines the physical meaning of each
single wave by searching its governing
equation; and investigates the statistical
proper- ties of the random part. The present
study tries to develop fundamental
techniques for automatic  probability
statistical analyses.

In the statistical analysis, many
probability density functions had been
developed and listed in mathematical
handbooks [10-12]. People may calculate
the estimate of probability density function
of a data string and compares it to a existing
one. However, if a long data string is
composed of more than one independent
informations, the classical probability
density function analysis may be inadequate
to represent the random part. In other
words, the resulting function can not
correctly reflect different data sources.
Today, there are two available semi-artificial
wave decomposition methods [6-9] for
deterministic data. To the author’s
knowledge, however, there is no such
decomposition method for the random data.
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It is believed that, to search a decomposition
method for the random data, it is an
important issue to develop the localized
probability density function analysis.

ANALYSIS

Consider a normalized distributed
random data string, the corresponding
probability den- sity and distribution
functions are, respectively, [10-12]
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where z=(x—u)/o, with 4, and o as
the mean and standard deviation of the
random data. If the data is of the
chi-squared distribution, the corresponding
probability density and distri-

bution functions are, respectively
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For two independent random variables x
and y (where a<x<b and a<y<pg),
whose probability density functions are
p(x) and p,(y), alinear combination is

Z=CX+Cy (5)
The corresponding probability density
function can be evaluated as
p2)= D P)p2(Y) (©)
Z=C,X+C,Yy

such that ga+c,a<z<cb+c,B. Note that
the expression of Eq.(6) can be expressed as

P(2) = P(ex+¢y) = [ P pp (2 )dx
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With  known  probability density or

distribution function, the corresponding
mean value, mean square value, variance
and other statistical parameters can be
evaluated. However, although all the
existing probability density functions can be
obtained from published literatures, they are
developed under completely specified
conditions. For a physical process whose
conditions of generating the random

variables are not completely known, it is
very hard to determine the exact density
function to be tested. Therefore, the
following local test algorithm is proposed.

Random Number Generation

From the Micro-Soft IMSL Liberary in
the F-77 FORTRAN power station, the
pseudo- random number generator written
in the form

r(i)= RANDOM_NUMBER(x)
can give a pseudo random data set within
the range between 0 and 1. The following
classical algorithm gives the estimated
probability density function [10- 11]:

1. Divide the range of r(i), 0<i<n, into

m equal spacing intervals

o =rmin. A, 2.
fm =F(max, Ar=rj,1—rj= constant.

2. Assign each interval a counting number
aj=0, j=1m

3. Comparing r(i) to all the intervals, if
rp<r@) <rjy,addlto aj.

4. After checking all i, normalize aj to
be aj/(n+1). These a;’s constitute the
approximated proéability density
function of the random data..

By employing this procedure, a typical

result is shown in Figs.1a and 1b. Since the

random number generator gives a

pseudo-random number, there is significant

deviation (about 11% maximum error) of
the probability density function from the
exact density value of 0.5. If the interval
number increases, the scattered error
becomes more significant. Note that, there
are many kernel density functions shown in

Ref.[13] which can smooth these deviations.

Because of the first study, it seems

reasonably to omit the smoothing procedure

and to restrict the number of intervals to be

20.

To generate random number of a known
distribution, a convenient method is to set
the pseudo-random number data as the value
of probability density function and inversely
obtain the corresponding random variable.
For example, for the normal distribution, let

r(i) = P(z) ®)
The inversion formulas for a normal
distributed random variable is

z; = P7H(r(i)) 9
which can be approximately evaluated via a
searching procedure upon the tabulated



table for the normal distribution together
with a interpolation formulas.

Local Estimate of Probability Density
Function

From a random data string, one can
estimate the probability density function via
the above mentioned procedure. However, if
the random data string is a linear
combination of two random variables each
with a different distribution, the above
estimation procedure certainly leads to a
ultimately different estimate of the density
function. In order to introduce the
localization effect, the Gaussian kernel
function is embedded to the procedure, so
that it becomes the following localized
algorithm for the k —th point.

1. Divide the range of r(i), 0<i<n,into m
equal spacing intervals 1y =r(i)min, .
1y Ty = 1) max -

2. Assign each interval a counting number

aj =0, j=Lm for the fixed k
Meanwhile, assign0to T .
3. Comparing r(i) to the intervals, if

rj<r() <rjq, add exp[-(i-k)?/207]
toaj and T respectively.

4. After checking all i, normalize ajy to
be aj /T . These aj ’s are the
approximated local probability density
function of the k- point.

The first step is not changed and the kernel

factor o roughly reflects the averaging

range. Since the employed pseudo-random
data’s probability density function has about

10% error, the value of & should be large

enough as will be discussed below.

RESULTS AND DISCUSSIONS

Figures 2a and 2b are the normal
distributed random number and the
probability density function generated from
the pseudo-random number. The estimate of
the random number coincides to that of the
normal distribution except some wiggles
which is caused by the scattering of Figs.1b.
The corresponding chi-squared distributed
random number and probability density
function are shown in Figs.3a and 3b,
respectively. Again, small deviations from
the exact density function are found.
Nevertheless, the main characters of two
distributions are captured by these two

approximated random variables.

That shown in Fig.4a compares the local
probability density function estimates of the
normal distributed random data at the
central point (total points = 2000) with
different Gaussian kernel factor o (100,
300, 500, and 1000). The long dashed line is
the exact probability density function. It is
seen that, as o >500, the approximated
local density function estimates approach to
the uniform estimate (the same as that of
Fig.2b) with insig- nificant error. Figure 4b
compares the local probability density
function estimates of the chi- squared
distributed random data at the same central
location (total points = 2000 too) with
similar o ’s. Again, the estimates converge
to the uniform estimate whenever o >500.
It is believed that, if the error of the random
number’s  probability density function
(Fig.1b) can be reduced, the convergent
criterion of o can be further decreased.

In order to demonstrate the overall effect,
that local probability density function
estimates over the range of i=500 to 1500
are shown in Fig.5a and 5b for the two
different distributed random number. For
those point within 0<i <500 and
1500 <i<2000, the left and right handed
data is not long enough and are not shown
in these figures. For the normal distributed
random number, the uniformity is very well.
On the other hand, that of the chi-squared
distributed random data does not achieve the
uniformly distributed estimation. Figure 5c
shows the result of using o =700 and
i=600 to 1400 where the uniformity is
approximately achieved.

As to the random data composed of two
different distributed random data, the
following random data is constructed.

2(i) = x(i), 0<i<500
2(i) = (L—w)x(i) + wx y(i), 500 <i <1500
2(i) = y(i), 1500 < i < 2000
w = (i —500) /1000

(10)

where x(i) and y(i) are corresponding to the
normal and chi-squared distributed random
numbers, respectively. Note that both
x(i)and y(i) are constructed via the same
random number r(i). Here, the central part
is composed of two different distributed



random number. Within this range,
distributions of the random number are
different from point to point. Obviously, if
the classical algorithm of estimating the
probability density function is employed,
the result must lead to a wrong conclusion.
Figure.6a shows the local estimates over the
whole range of the composed random data.
The local probability density function
distribution does roughly exhibit a weighted
averaged distribution in the central part.
That shown in Fig.6b is the same
distribution but with the random data using
different data string: x(i)=r(i), for
i=0,2000 , but vy@)=r@i+ 2000 )
Although Fig.6a is slightly different from
that of Fig.6b, their overall characters are
quite similar. That shown in Fig.6c is the
exact  probability  density  function
distributions evaluated via the following
calculation which is corresponding to the
that of Eq.(10) without considering the true
random data.

Pw (i, 1) = px (i, ), 0<i<500
Pu (i 1) = D (K, )Py (% —wx yi) /(L—w)),
k=0

500 <i <1500

Pw (i, J) = py (. ). 1500 < i < 2000

G, 1) = D Pulk, Dexp| ~(i-K)? 1207 |+
k=0

S 2 2
kz(:)exp[ (i-k)° /20 }

(11)
where | denotes the magnitude of the
composed random variable, p,(i,]) ’s
and p(i, j) ’s are normalized in j direction
for every 1 and are not shown here, and
w takes exactly the same formula of
Eq.(10). Although the detail distribution are
different, its overall character is similar to
that of Figs.6a and 6c¢. In other words, the
estimates of Fig.6a and 6b approximately
reflect the local probability density.

From the above discussions, although
there are some small discrepancies which
are Dbelieved to be caused by the
pseudo-random number generator, the
proposed local estimation upon the local
probability density function can reflect

some important properties of the random
number. Therefore, it seems that further
studies about this issue are of worthwhile
effort.

CONCLUSIONS

The local estimation on the local
probability density function is proposed.
Numerical tests show that this new
definition can demonstrate the probability
density function’s local property which

cannot be reflected by the classical
definition.
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Fig.1 (a) The pseudo-random number, (b) the
probability density function estimation for
the result of RANDOM_NUMBER(X).
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Fig.2 (a) The normal distributed random number
of normal distribution; (b) the comparison
between the estimated probability density
function and the exact value.
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Fig.3 (a) The normal distributed random number
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Fig4 (a) The convergence of the

local

probability density function of normal
distributed random number at the central
point; (b) that of chi-squared distributed

random number.
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Fig.5 (a) The local probability density function
distribution of the normal distributed
random number from i =500 to 1500, total
point number = 2000, o =500; (b) that of
the chi-squared distributed random number
with o =500; and (c) that of the chi-
squared distributed random number with
o =700.
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Fig.6 (a) The local probability density function
of a composed random variable with
x(i) and y(i) constructed from the same
random data; (b) the same function with
x(i) and y(i) constructed from different
random data; (c) the reference exact

probability density function distribution.
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