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ABSTRACT 

A local estimating algorithm of evaluating local probability density function is proposed 
by embedding the Gaussian kernel to the counting of occurrence frequencies. The random 
number generator of the Micro-Soft FORTRAN package (F-77), say the RANDOM 
_NUMBER(x) subroutine, is employed to produce pseudo- random number. Numerical tests 
show that, if the Gaussian kernel factor is large enough, local estimates converge to fixed 
density function distributions. Moreover, the local probability density function’s variation of a 
random data string composed of two different distributions is captured by the present method. 
It is believed that, if a true random number generator is employed or a smoothing procedure 
upon the probability density function is employed, the convergent Gaussian kernel factor will 
be significantly reduced. 
 
Keywords: local probability density function estimation, Gaussian kernel function, 

composite random variables. 
 

INTRODUCTION 
Because of the development of 

computer technologies, it was predicted that, 
about 60 years later, a single computer’s 
physical and hard disk memories might be 
larger than the total memories of the whole 
living beings of the earth. In other words, 
the computing resource might increase to a 
practical level that many compli- cated 
problems can be analyzed in future. Simu- 
ltaneously, the related technologies will 
produce significantly large amount of data 
in which one part of data might require 
sophisticated analysis. To treat them 
accurately, reasonable methods should be 
fully automatic. Unfortunately, most of 
present available methods of data analysis 
heavily rely on artificial techniques. 
Therefore, it is reasonable to search 
fundamental techniques for automatic data 
analysis. 

An automatic data analysis method 
might be divided into 4 stages: separates 
data into the deterministic and random parts 
via robust estimation [1-5]; decomposes the 
deterministic part into sinusoidal and 

non-sinusoidal part and the former is further 
decomposed into single waves [6-9]; 
examines the physical meaning of each 
single wave by searching its governing 
equation; and investigates the statistical 
proper- ties of the random part. The present 
study tries to develop fundamental 
techniques for automatic probability 
statistical analyses. 

In the statistical analysis, many 
probability density functions had been 
developed and listed in mathematical 
handbooks [10-12]. People may calculate 
the estimate of probability density function 
of a data string and compares it to a existing 
one. However, if a long data string is 
composed of more than one independent 
informations, the classical probability 
density function analysis may be inadequate 
to represent the random part.  In other 
words, the resulting function can not 
correctly reflect different data sources. 
Today, there are two available semi-artificial 
wave decomposition methods [6-9] for 
deterministic data. To the author’s 
knowledge, however, there is no such 
decomposition method for the random data. 
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It is believed that, to search a decomposition 
method for the random data, it is an 
important issue to develop the localized 
probability density function analysis. 
 
ANALYSIS 
  
   Consider a normalized distributed 
random data string, the corresponding  
probability den- sity and distribution 
functions are, respectively, [10-12] 
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For two independent random variables x  
and y (where a x b≤ ≤  and yα β≤ ≤ ), 
whose probability density functions are 

1( )p x  and 2 ( )p y , a linear combination is 
 1 2z c x c y= +                      (5) 

The corresponding probability density 
function can be evaluated as 
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With known probability density or 
distribution function, the corresponding 
mean value, mean square value, variance 
and other statistical parameters can be 
evaluated. However, although all the 
existing probability density functions can be 
obtained from published literatures, they are 
developed under completely specified 
conditions. For a physical process whose 
conditions of generating the random 

variables are not completely known, it is 
very hard to determine the exact density 
function to be tested. Therefore, the 
following local test algorithm is proposed. 
 
Random Number Generation 
 
   From the Micro-Soft IMSL Liberary in 
the F-77 FORTRAN power station, the 
pseudo- random number generator written 
in the form 
   ( )r i = RANDOM_NUMBER(x) 
can give a pseudo random data set within 
the range between 0 and 1. The following 
classical algorithm gives the estimated 
probability density function [10- 11]: 
1. Divide the range of ( ), 0r i i n≤ ≤ , into 

m  equal spacing intervals 
0 min 1( ) , ,r r i r= 2,...,r     

max( )mr r i= , 1j jr r r+Δ = − =  constant. 
2. Assign each interval a counting number 

0, 1,ja j m= =  
3. Comparing ( )r i  to all the intervals, if 

jr ≤ ( )r i  1jr +≤ , add 1 to ja . 
4. After checking all i , normalize ja  to 

be /( 1)ja n + . These ja ’s constitute the 
approximated  probability density 
function of the random data.. 

By employing this procedure, a typical 
result is shown in Figs.1a and 1b. Since the 
random number generator gives a 
pseudo-random number, there is significant 
deviation (about 11% maximum error) of 
the probability density function from the 
exact density value of 0.5. If the interval 
number increases, the scattered error 
becomes more significant. Note that, there 
are many kernel density functions shown in 
Ref.[13] which can smooth these deviations. 
Because of the first study, it seems 
reasonably to omit the smoothing procedure 
and to restrict the number of intervals to be 
20. 
 
   To generate random number of a known 
distribution, a convenient method is to set 
the pseudo-random number data as the value 
of probability density function and inversely 
obtain the corresponding random variable. 
For example, for the normal distribution, let 
  ( ) ( )ir i P z=                       (8) 
The inversion formulas for a normal 
distributed random variable is 
  1( ( ))iz P r i−=                     (9) 
which can be approximately evaluated via a 
searching procedure upon the tabulated 
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table for the normal distribution together 
with a interpolation formulas. 
 
Local Estimate of Probability Density 
Function 
  From a random data string, one can 
estimate the probability density function via 
the above mentioned procedure. However, if 
the random data string is a linear 
combination of two random variables each 
with a different distribution, the above 
estimation procedure certainly leads to a 
ultimately different estimate of the density 
function. In order to introduce the 
localization effect, the Gaussian kernel 
function is embedded to the procedure, so 
that it becomes the following localized 
algorithm for the k − th point. 
 
1. Divide the range of ( ), 0r i i n≤ ≤ , into m   

equal spacing intervals 0 min 1( ) , ,r r i r=  
2 ,.....,r max( )mr r i= . 

2. Assign each interval a counting number 
0, 1,jka j m= =  for the fixed k . 

Meanwhile, assign 0 to T . 
3. Comparing ( )r i  to the intervals, if 

jr ≤ ( )r i  1jr +≤ , add 2 2exp[ ( ) / 2 ]i k σ− −  
to jka  and T  respectively. 

4. After checking all i , normalize jka  to 
be /jka T . These jka ’s are the 
approximated local probability density 
function of the k −  point. 

The first step is not changed and the kernel 
factor σ  roughly reflects the averaging 
range. Since the employed pseudo-random 
data’s probability density function has about 
10% error, the value ofσ should be large 
enough as will be discussed below. 
 
RESULTS AND DISCUSSIONS 
 
    Figures 2a and 2b are the normal 
distributed random number and the 
probability density function generated from 
the pseudo-random number. The estimate of 
the random number coincides to that of the 
normal distribution except some wiggles 
which is caused by the scattering of Figs.1b. 
The corresponding chi-squared distributed 
random number and probability density 
function are shown in Figs.3a and 3b, 
respectively. Again, small deviations from 
the exact density function are found. 
Nevertheless, the main characters of two 
distributions are captured by these two 

approximated random variables. 
 
   That shown in Fig.4a compares the local 
probability density function estimates of the 
normal distributed random data at the 
central point (total points = 2000) with 
different Gaussian kernel factor σ  (100, 
300, 500, and 1000). The long dashed line is 
the exact probability density function. It is 
seen that, as 500σ ≥ , the approximated 
local density function estimates approach to 
the uniform estimate (the same as that of 
Fig.2b) with insig- nificant error. Figure 4b 
compares the local probability density 
function estimates of the chi- squared 
distributed random data at the same central 
location (total points = 2000 too) with 
similar σ ’s. Again, the estimates converge 
to the uniform estimate whenever 500σ ≥ . 
It is believed that, if the error of the random 
number’s probability density function 
(Fig.1b) can be reduced, the convergent 
criterion of σ  can be further decreased. 
 
   In order to demonstrate the overall effect, 
that local probability density function 
estimates over the range of i = 500 to 1500 
are shown in Fig.5a and 5b for the two 
different distributed random number. For 
those point within 0 i≤  <500 and 
1500 2000i< ≤ , the left and right handed 
data is not long enough and are not shown 
in these figures. For the normal distributed 
random number, the uniformity is very well. 
On the other hand, that of the chi-squared 
distributed random data does not achieve the 
uniformly distributed estimation. Figure 5c 
shows the result of using 700σ = and 
i = 600 to 1400 where the uniformity is 
approximately achieved. 
 
   As to the random data composed of two 
different distributed random data, the 
following random data is constructed. 

  

( ) ( ), 0 500
( ) (1 ) ( ) ( ), 500 1500
( ) ( ), 1500 2000

( 500) /1000

z i x i i
z i w x i w y i i
z i y i i
w i

= ≤ <
= − + × ≤ ≤
= < <

= −

                

(10) 
where ( )x i and ( )y i are corresponding to the 
normal and chi-squared distributed random 
numbers, respectively. Note that both 

( )x i and ( )y i  are constructed via the same 
random number ( )r i . Here, the central part 
is composed of two different distributed 
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random number. Within this range, 
distributions of the random number are 
different from point to point. Obviously, if 
the classical algorithm of estimating the 
probability density function is employed, 
the result must lead to a wrong conclusion. 
Figure.6a shows the local estimates over the 
whole range of the composed random data. 
The local probability density function 
distribution does roughly exhibit a weighted 
averaged distribution in the central part. 
That shown in Fig.6b is the same 
distribution but with the random data using 
different data string: ( ) ( ),x i r i=  for 

0,2000i = , but ( ) (y i r i= +  2000 ) . 
Although Fig.6a is slightly different from 
that of Fig.6b, their overall characters are 
quite similar. That shown in Fig.6c is the 
exact probability density function 
distributions evaluated via the following 
calculation which is corresponding to the 
that of Eq.(10) without considering the true 
random data. 
 

0

( , ) ( , ), 0 500
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w x
m

w x y k k
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                                   (11) 
where j denotes the magnitude of the 
composed random variable, ( , )wp i j ’s 
and ( , )p i j ’s are normalized in j direction 
for every i  and are not shown here, and 
w  takes exactly the same formula of 
Eq.(10). Although the detail distribution are 
different, its overall character is similar to 
that of Figs.6a and 6c. In other words, the 
estimates of Fig.6a and 6b approximately 
reflect the local probability density. 
 
   From the above discussions, although 
there are some small discrepancies which 
are believed to be caused by the 
pseudo-random number generator, the 
proposed local estimation upon the local 
probability density function can reflect 

some important properties of the random 
number. Therefore, it seems that further 
studies about this issue are of worthwhile 
effort. 
 
CONCLUSIONS 
   
   The local estimation on the local 
probability density function is proposed. 
Numerical tests show that this new 
definition can demonstrate the probability 
density function’s local property which 
cannot be reflected by the classical 
definition. 
 
ACKNOWLEDGEMENT 
 
   This work is supported by the Taiwan 
National Science Council grant no. NSC 90- 
2212-E-006-140.  
 
REFERENCE 
 
1. Press, W. H.; Flannery, B. R.; Teukolsky, 

S. A.; and Vetterling, W. T.,“Numerical 
Recipes in C, the Art of Scientific 
Computing,” Chapter 14, Cambridge 
University Press, Cambridge, New York, 
1988. 

2. Jeng , Y. N. and Chen, C. T., “An Iterative 
Least pl  Error Method,” 1999 
AASRC/CITOC/ CSCA Aerospace Joint 
Conference Paper no. AA-99-Fa-15, 
pp.155-162, 1999. 

3. Jeng, Y. N. and Chen, C. T., “A 
Successive Error Eliminating Scheme for 
Simultaneous Equations of An 
Over-Constrained System via the Least 

pl Error  Method, ” 1999 AASRC/ 
CITOC/CSCA Aerospace Joint 
Conference Paper no. AA-99-Fa-15, 
pp.177-184, 1999. 

4. Jeng, Y. N., “The Moving Least Squares and  
Least p-Power Methods for Random Data,”  
The 7-th National Computational Fluid Dyna- 
mics Conference, P-9 to P-14, Aug. 2000. 

5. Jeng, Y. N., “An Adaptive Robust 
Estimation Using the Least pl  method,” 
The First Taiwan-Japan Workshop on 
Mechanical and Aerospace Engineering, 
National Cheng Kung University, Tainan, 
Taiwan, R.O.C., Dec. 19，pp.524-534, 
2001. 

6. Huang, N. E., Shen, Z., Long, S. R., Wu, 
M. C., Shih, H. H., Zheng, Q., Yen, N. C., 
Tung, C. C. and Liu, H. H., “The 
Empirical Mode Decomposition and the 
Hilbert Spectrum for Nonlinear and 
Non-stationary Time Series Analysis,” 



 5

x

f(x
)

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1
Probability density function estimate
Pseudo-random number generator's output
2000 points, data is normalized to (-1,1)
RANDOM-NUMBER(x)

dashed line : exact probability density value = 0.5
thin solid line : estimated value

Frame 001 ⏐ 23 Jan 2002 ⏐Frame 001 ⏐ 23 Jan 2002 ⏐

i

r(
i)

0 500 1000 1500 2000
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Pseudo-random number between [0,1]
2000 points

Frame 001 ⏐ 23 Jan 2002 ⏐Frame 001 ⏐ 23 Jan 2002 ⏐

x

f(x
)

-3 -2 -1 0 1 2 3

0

0.5

1 Probability density function with 20 intervals
heavy line : the referenced normal distribution
thin line : the calculated data

Frame 001 ⏐ 17 Jan 2002 ⏐Frame 001 ⏐ 17 Jan 2002 ⏐

xx

ie
rf(

x)

0 500 1000 1500 2000

-2

-1

0

1

2

3

4

5
random data generated by the normal distribution

scale shifted to about -2 to 2

Frame 001 ⏐ 17 Jan 2002 ⏐Frame 001 ⏐ 17 Jan 2002 ⏐

Proc. R. Soc. Lond. A., vol. 454, 
pp.903-995, 1998. 

7. 鄭育能，’The High and Low Pass Filters 
of Non-Stationary Data via Modified 
Hilbert Transforms,’ 中華民國力學學會
第 24屆全國力學會議論文集，H105-112, 
Dec. 2000. 

8. Jeng, Y. N and Kuo, C. W., “Modifica- 
tions upon the Huang Empirical Mode 
Decompo- sition,” 中華民國力學學會第
25 屆 全 國 力 學 會 議 論 文 集 ，
pp.2739-2749, Dec. 2001. 

9. Jeng, Y. N, “An Approximate Wave 
Decom- position Method,” 中華民國力
學學會第 25 屆全國力學會議論文集，
pp.2753-2761, Dec. 2001. 

10. Devore, J. L. “Probability and Statistics 
for Engineering and the Sciences,” 5th 
ed. Duxbury Thomson Learning, 
Austrlia, 2000. 

11. Bendat, J. S. and Piersol, A. G., 
“Random Data Analysis and Measure- 
ment Procedures,” 3rd ed. John Wiley 
& Sons, New York, 2000. 

12. Abramowitz, M., and Stegun, eds, 
“Handbook of Mathematical Func- 
tions,” National Bureau of Standards, 
1970.  

13. Silverman, B. W., “Density Estimation 
for Statistics and Data Analysis,” 
Chapman and Hall, London, 1986. 

(1a) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1b) 

 

 

 

 

 

 

 

 

Fig.1 (a) The pseudo-random number, (b) the 

probability density function estimation for 

the result of RANDOM_NUMBER(x). 
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Fig.2 (a) The normal distributed random number 
of normal distribution; (b) the comparison 
between the estimated probability density 
function and the exact value. 
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Fig.3 (a) The normal distributed random number 

of chi-squared distribution; (b) the 

comparison between the estimated 

probability density function and the exact 

value. 
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Fig.4 (a) The convergence of the local 

probability density function of normal 
distributed random number at the central 
point; (b) that of chi-squared distributed 
random number. 
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Fig.5 (a) The local probability density function 

distribution of the normal distributed 
random number from i = 500 to 1500, total 
point number = 2000, 500σ = ; (b) that of 
the chi-squared distributed random number 
with 500σ = ; and (c) that of the chi- 
squared distributed random number with 

700σ = . 
(6a) 
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Fig.6 (a) The local probability density function 

of a composed random variable with 

( )x i and ( )y i constructed from the same 

random data; (b) the same function with 

( )x i and ( )y i constructed from different 

random data; (c) the reference exact 

probability density function distribution. 
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摘  要 
 

   本文發展一種新的局部或然率密度函

數的估算法，在計算隨機變數的次數時加

入高斯核函數。隨機數據是應用

FORTRAN 語言中的 RANDOM_ 
NUMBDR(x)副程式所產生，對每一點而

言，求取其密度函數時，將其它點與此點

的距離 iΔ 當做參數以求高斯核函數

exp (- 2 2( ) /(2 )i σΔ )，累加時不是加 1 而

是加該核函數的值。數值驗證顯示核函數

平滑參數σ 足夠大時，新的估算法可反映

或然率密度函數隨自變數 t變化的情形。 

關鍵詞：局部或然率密度函數，高斯核函

數，不同或然率密度之隨機變數組
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