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ABSTRACT

A simple and fast strategy is proposed to evaluate the frequency

spectrum of a string of data whose total number may not be of 2”7 and the
time intervals between successive data may be non-uniform. The cubic
moving least squares method is first employed to separate both the
non-sinusoidal and random parts. Next, the Huynh M3A cubic monotonic
interpolation is modified and is employed to convert the remaining data into
a data string with uniform time intervals and the total data number is

exactly 2™. Finally, a simple FFT algorithm is employed to provide the
spectrum with negligible low frequency error.

Key words: Cubic moving least squares, FFT, Proper number of data,

Periodic condition.

I. INTRODUCTION

Because of the rapid development of computer
hardware and software, the application of a
computational fluid dynamical program to unsteady
problems has become practical. During the post
processing step, inspecting the frequency spectrum at
some spatial locations is a convenient tool for looking
into the physics of a flow field. Most computational
programs have the character of changing time step size to
get merits of both computational stability and computing
efficiency. As a consequence, a result of an unsteady
CFD program may involve non-uniform time steps,
possibly steps whose number of data points is not exactly
equal to some power of 2 or the products of some powers
of integers. Consequently, how to employ a Fast Fourier
Transform (FFT) algorithm to evaluate the frequency
becomes an important task.

During the developing period of the fast Fourier
transform, people considered that an analogical data
string is exact. On the other hand, an FFT is a digital
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version which can only capture a finite number of data.
Consequently, many available FFT algorithms have been
embedded with the following functions to suppress the
aliasing error [1]: side-lobe leakage suppression, adding
zeros for circular correlation, and zoom transform etc..
Most of these modifications are trivial for a result of a
computational fluid dynamical or other program, because
the output data is principally located at finite points. In
other words, it seems that an FFT algorithm without any
modification is more suitable for such a post processing
than that with modifications.

To the author’s knowledge, the practical problems of
obtaining the frequency spectrum from a result of the
computational fluid dynamical program are: (1) how to
reasonably removing the numerical error (do the classical
statistical methods work?; (2) how to face the problem of
non-uniform time steps; and (3) how to treat the problem
of data number # 2" ? To the authors’ knowledge, the
last two problems can be resolved by employing a
numerical interpolation algorithm. However, a high order
interpolation algorithm may or may not introduce
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spurious oscillation which might introduce significant
error to the high frequency part. In this study, a simple
and rtobust strategy is proposed to solve the last two
problems.

I1. ANALYSIS

Cubic Moving Least Squares Methed
Consider a set of data, say (x,,5,),i=0,n. A

moving cubic least squares method defines the error
measure function at a point x, in form of [2]

I, =Y e 0y — £ (= x)P
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where e /3% is a Gaussian kernel function with a
smoothing factor o . Following the classical least
squares method, the minimizing of 7, with respect to

parameters a, resulting in a set of linear simultaneous

algebraic equations. If the polynomial of f,(x) takes a

constant value, the method becomes a Gaussian
smoothing method. If both the smoothing factor & and
data spacing are constants, like the Gaussian smoothing,
the FFT algorithm can be employed for the present
approach. The required computing count for
multiplication and division is 4(n+1)In(n+1) plus the

operating count to evaluate a set of 4 linear equations.

The numerical result of a computational fluid
dynamical program often involves non-sinusoidal,
pseudo-sinusoidal and random parts. The non-sinusoidal
and pseudo-sinusoidal parts are smooth data and reflect
the effective data of physics. The random part involves
irregular fluctuation with a wavelength in a range of
several grid size and is caused by insufficient grid
resolution and numerical errors. For an experimental data,
the random part is frequently generated by the
malfunction of instruments and noise. In order to obtain a
relevant physics, people often remove the random part
before evaluating the frequency spectrum. Although the
smooth non-sinusoidal part is an important part of
physics, it contributes a wide band spectrum which
introduces low frequency error to the smooth
pseudo-sinusoidal part. In this study, the moving cubic
least squares method is employed to separate the
non-sinusoidal and the random parts, with large enough
and small enough smoothing factors o , respectively.

Monotonic Cubic Interpolation Method
Consider a Hermite cubic interpolation between

points (x;,x,,,)
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The sufficient monotonic condition of this cubic
interpolation is that [3,4]
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Once the monotonic condition is violated, Fritsch and
Carlson [3] proposed to reset y, anew value satisfying
Eq.(2). In 1993, Huynh [5] developed several ENO type
monotonic cubic interpolation method. In this study, his
M3A interpolation is employed that gives limiter to
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At two ends, the Huynh boundary condition will be
employed [5]. As will be discussed later, this cubic
interpolation might introduce too much artificial
modification.

To the authors’ knowledge, the magnitude of
spurious oscillation of the cubic spline interpolation is

roughly proportional to the ratio of l y,./s,.,,l,2| and

Yiu1! S:0,2| - For an abrupt discontinuous jump next to a
straight line, these ratios might become very large.
Otherwise, these ratios may be of finite value. Therefore,
the desired switching function between the cubic spline
interpolation and monotonic cubic interpolation is chosen
to be
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Consequently, in Eq.(4), the slope of monotonic cubic
interpolation is modified to

. . A . k
y, =sgn(t;) mln['i‘pi—)/z (x)+ P2 (x; )I ,max(k |sf ‘ ’E'ti ‘)]
(6)

In order to reduce error in the limiting case, the cubic
interpolation is further degenerated to be a linear
equation whenever three successive points are almost
collinear, say
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where £ 1is an user specified tolerance. This monotonic

interpolation method requires an operation count of

multiplication and division in the order of k-n+

(L+3)-m , where n is number of old data points,
k=30, m is number of new data points, and L is the
count of a searching procedure to allocate an
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Fast Fourier Transform

For the sake of simplicity and to employ the data
structure of a computer, it seems convenient to use the
simple FFT algorithm whose data points are exactly

equal to 2"(=n+1) [6]. For a set of data, the Fourier
transform pair is
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2= e ®)

1 ° i27kfox
ak=ny(x)e2%dx
0

where (0,7;) is the data range, f,=1/T, is the

fundamental frequency. For convenience, in this study,
the resulting amplitudes are expressed in terms of their
absolute values. From the integration by part formula, it
is easy to prove that
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If there are jumps at two ends, the low frequency error
will be introduced. In other words, it would be better to
choose data points at two ends with periodic y,y', and
" ’s. Since it is not easy to satisfy all of these conditions,
it is helpful to choose data at two ends with zero y and
lety' and y" be almost periodic. To locate zero y

points at two ends, choose two successive points with
YisYin and y,,y,., whose values change from positive
sign to negative (or from negative to positive), where i

denotes a point around the left end and %k denotes a
point around the right end. Subsequently, a proper
interpolation will give the approximate points of zero y .
Equations (9) also shows the fact that a shorter data range
gives a smaller low frequency error due to jumps of y

and its derivatives at two ends and other artificial
modification upon the original data.

III. RESULTS AND DISCUSSIONS

In order to examine the effect of moving least
squares method, a sine wave with wave length 4=0.5
(every wave length is resolved by 50 points) is smeared
by the Gaussian smoothing (error is shown as solid line
in Fig.1) and cubic moving least squares (as dotted line)
methods, respectively. Those shown in Fig.1 are the
maximum error (reduction of the local maximum of the
sine wave) generated by two different smoothing
methods. It is obvious that, for the Gaussian smoothing,
the flatten effect become insignificantly small only if
0 <0.0224. On the other hand, for the cubic moving
least squares method, the flatten effect at the local
maximum point is small if ¢ <0.0864 . Obviously, the
cubic moving least squares has a much better curvature
resolving capability than that of the Gaussian smoothing.
If a still large smoothing factor o is employed, the sine
wave may be flattened to a straight line. Figure 2 shows
the remaining peak value (designed as residue) of both
smoothing methods. The residues are negligible when
0 >0.484 for the Gaussian smoothing method or when
0 >0.584 for the cubic moving least squares method.
Their tendencies show that both methods’ smearing
capabilities are similar. However, their computing times
are significantly different. Fromn these discussions, it
seems that, for a giveno and the cubic moving least
squares method, the long waves whose A2>120 will be
preserved and the short waves with A<1.60 will be
removed. Therefore, it is an important to search methods
for shrinking the transition range.
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Figure. 1 The maximum error at the peak of sine
wave with wave length 4=0.5 (50 points
per every wave length) upon smearing of
the cubic moving least squares (dotted
line) and the Gaussian smoothing (solid
line).

The effect of the modified Huynh monotone cubic
interpolation can be examined from Fig.3. It seems that,
in this example, the present modification does not destroy
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the monotonic behavior of the original Huynh cubic
monotone interpolation. Figure.4 shows the comparison
between the original and modified Huynh cubic
monotone interpolation. The relaxing of the strict
monotone condition of Eq.(3) (corresponding to k=3)
tobe k=4 does change the interpolation shape but still
keeps the monotonic property as shown. From these two
test cases, it seems that the present modification partially
releases the artificial modifications to some extent.
Except for the strange distribution with a linear segment
followed by a large jumping, it is generally recommended
to employ k& =20 for most smooth problems.
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Figure. 2 The residue variation with respect to the
smoothing factor ¢ : heavy solid line is
the result of employing the Gaussian
smoothing method and the heavy dotted
line is the result of employing the cubic
moving least squares method.

Solid line : given data (11 points)
dotted line : with k= 20
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Figure. 3 The modification of Eqs.(6,7) does not
significantly change the monotone
character of the Huynh monotone
interpolation.
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Figure. 4 Comparison between results of the
original Huynh monotone cubic
interpolation k=3 (thin line) and the
present modification with parameter
k=4 (dotted line).

In order to examine the effect upon the frequency
spectrum, an experimental pressure data with insufficient
sampling rate as shown in Fig.5a and 5b is examined.
These data records the turbulent pressure fluctuation
(pressure variation with respect to the mean pressure) at
the central point of a body’s base surface. The axis of
log(mode-no) is normalized. In the detailed plot of Fig.5b,
the non-smoothness is obvious. At the left end point, the
original pressure data is almost equal to the mean
pressure within 0.01% so that it is reset to be 0 artificially.
For the sake of concentrating on the interpolation effect
and to remove the negative effect of non-periodic
condition, the subsequent 8191 points are employed, and
at the 8192-th point, the pressure is artificially set to zero.
Figure.6 shows the spectrum distribution of the
pseudo-sinusoidal part on log-log scale. In Fig.7, the
result of employing the proposed monotonic cubic
interpolation (whose data point increases to be 18392
points) and resulting spectrum is re-scaled to make a
clear comparison with respect to that of Fig.6. A careful
inspection upon Figs.6 and 7 reveals that, for the data in
the range of log(mode no.) <—1.8 of Fig.6, the largest
amplitude difference between two figures is less than 1%.
Beyond that range, two figures have significant
amplitude difference. If the non-smooth data variation is
interpreted as the character of random part, this example
shows that a numerical interpolation will modify the high
frequency part of the spectrum. Therefore, before
employing an FFT algorithm, it seems reasonable to
remove the random part.

Subsequently, consider the test data (shown as thin
solid line in Fig.8), which is the pressure history around a
turbine blade evaluated by a computational fluid
dynamics code. The line with open circles is the result
smeared by the cubic moving least squares method with
0=0.05. A careful inspection upon the difference
between the thin solid and heavy solid lines (shown as
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thin solid line around the horizontal axis) reveals that the
short wave part removed by the moving least squares
method is not a well organized composite wave formed
from complete sinusoidal waves and noise. In other
words, it may involve numerical error and only part of
true physics of the flow field for which further study is
necessary. The line with open triangles can be considered
as the smooth non-sinusoidal part that is obtained by
using 0 =0.4 to smear the heavy dotted line. The line
with squares around the horizontal axis is the difference
between the open circle line and open triangle line. From
this example it seems that the cubic moving least squares
method is a convenient tool to decouple the random and
smooth non-sinusoidal parts from the original data.

(5a)
0.2 Original data, data point = 8192 point
- The first point has force = 0,
at the 8193-th point force = 0 artificially
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0.2 Original data, data point = 8192 point
- The first point has force = 0,
at the 8193-th point force = 0 artificially
Original data is not smooth
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Figure. 5 The pressure fluctuation with respect to
the mean pressure at the central point of
a bland body's base face: (5a) the overall
fluctuation; and (5b) the detailed plot
showing the non-smooth behavior.
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Figure. 6 The frequency spectrum distribution of the
original data of Fig.5.
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Figure. 7 The frequency spectrum distribution after
employing the monotonic cubic
interpolation to double the total number of
data points.

Now consider the result of applying an FFT
algorithm to the dotted line of Fig.8 where the
non-periodic condition obviously introduces a large low
frequency error as shown in Fig.9. If the linear trend
removal method is applied to the dotted line’s data, such
that the original data is subtracted by a data located on a
straight line connecting the initial and final points, the
low frequency error is still presented as shown in Fig.10.

In Fig.8, the line with squares around the horizontal
axis coincides with the result of rearranging the long
wave part (the open circle line subtracted by the line with
triangles) via the modified Huynh cubic monotonic
interpolation [5]. In order to preserve most of the
physical characters, at least two new points must be put
in every segment between two successive original data
points. To reduce low frequency error, data at two ends
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are properly chosen by the above mentioned method so
that force=0 at two ends (the resulting 7, is modified
accordingly). The resulting spectrum distribution is
shown in Fig.11 which involves small low frequency
errors. For the sake of comparing the effect of different
Gaussian kernel factor o on the non-sinusoidal part,
the line with triangles of Fig.12 shows the result of
employing ¢ =0.6 to smear the open circle line.

1 thin solid line : original data
small open circle : smoothed wave (with ¢ = 0.05)
0.9 open triangle line : long wave (with =04 )
heavy solid line : short wave
0.8 open square line : medium wave

Figure. 8 Different parts of data for the pressure
distribution around a blade tip: thin solid
line: original data; open circle line: result
of smoothed short wave with o =0.05;
triangle-line : long wave with 0=04;
square-line around force =0 ; smoothed
long wave minus smoothed short wave;
and heavy solid line around force =0:
shortest wave.

500
400~ Non-periodic boundary condition introduces large
i low-frequency error due to non-sinusoidal part
@300
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0 10 20 30 40 50
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Figure. 9 The frequency spectrum of the line with
open circles of Fig.8, where the large
non-periodic boundary condition
introduces large errors in the low
frequency range.
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Figure. 10 Resulting spectrum of treating the open
circle line of Fig.8 via the linear trend
removal, the linear trend removal still
introduce a significant modification over
the low frequency range.
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Figure. 11 The frequency spectrum of the line with
squares of Fig.8 whose data is truncated
at two ends.

The result shows that the non-sinusoidal part estimated
by alarger o is more straighten than that with a smaller
o . The resulting spectrum distribution is shown in
Fig.13. A careful comparison between Figs.11 and 13
reveals that their spectrum distributions are not much
different from each other, except that their amplitude
magnitudes differ from each other in an order of 10%.
For a still larger o, the dominate frequency’s amplitude
increases about 5% with respect to that of Fig.13. Since
most problems do not have a reference to identify the
smooth non-sinusoidal part, it is recommended to employ
a o2], (which is approximately corresponding to

the o value of Fig.13), where A, is the largest wave
length estimated by the first dominate frequency. On the
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other hand, to remove the random part, chooses o to be
2-3At or the approximate wave length of irregular data
variation.

1 thin solid line : original data
small open circle : smoothed wave (with ¢ = 0.05)
0.9 open triangle line : long wave (with 6 =0.6)

open square line : medium wave

time

Figure. 12 Different parts of data for the pressure
distribution around a blade tip; open
circle line: result of smoothed short wave
with ¢ =0.05; triangle-line : long wave
with ¢=0.6 ; and square-line around
force =0: smoothed long wave minus
smoothed short wave.
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Figure. 13 The frequency spectrum of the line with
squares of Fig.12 whose data is
truncated at two ends.

As discussed above, in the procedure of decoupling
the random and smooth non-sinusoidal part, the
magnitude of the Gaussian kernel factor o plays an
important role. Although the present study shows that it
should be determined by physical insight of the problem,
it still involves certain arbitrariness and non-uniqueness
because of the large transition range between the

capability of removing short waves and preserving long
waves. In other words, extensive further studies are
necessary.

Figure 14 is the data of vertical displacement at the
central point of a steel specimen excited by a hammer.
The solid line is the original data while the open circle
symbols are the rearranged data using the modified
Huynh monotonic interpolation. The overlapping plot
between the original data and interpolated data shows
that, if the proposed interpolation method is applied to a
smoothed data, the embedded interpolation error is
insignificantly small. The resulting frequency spectrum is
shown in Fig.15 that involves insignificant low frequency
errTor.

solid line : original data 2029 points

0.0009 open circle : out put of monotonic interpolation
4096 points

A ETEURT P T L -
0 0.025 0.05 0.075 0.1
time

Figure. 14 The original data (solid line) coincides
with the rearranged data (open circle
symbols).

PSR
100
mode-no.

1
50

Figure. 15 The frequency spectrum with negligible
low frequency error.

Finally, the procedure to employ the present strategy
is listed below.
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1. Choose the desired data range. For the sake of keeping
accurate data evaluation, additional data at two ends
are necessary. It would be better to add at least 2 to 3
shortest wave lengths of interesting.

2. Perform the cubic moving least squares method to
separate the random and smooth non-sinusoidal part
with suitable smoothing factor o ’s, respectively
(repeated iteration may be necessary).

3. Use the monotonic interpolation method to redistribute
the remaining data string at proper data points.

4. Find all zero points in the region outside the domain of
interest via a simple inspection procedure. From these
zero points, choose two end points so that the resulting
data range covers the domain of interest. In order to
make the error as small as possible, it is necessary to
make sure that the zero crossing trends at two ends

must be the same, say (¥ — ) (Y& —y7#) >0,

i+l

right

where x' and x/® are those points with y=0.

The points of y=0 at two ends can then be

determined by a proper interpolation formula.
Moreover, differences between the first and second
order derivatives at two ends must be kept as small as
possible.

5. Distribute new data points with the number of new
data points =2" and make sure that at least 2 new
points are located in every old data segment.

6. Use a simple FFT algorithm to evaluate the spectrum.
For a practical application, in order to have consistent
spectrum plots, the horizontal axis should be properly
scaled so that every wave before and after employing
the interpolation algorithm is expressed in the same
sine and/or cosine function.

IV. CONCLUSIONS

A simple and complete strategy to reduce the low
frequency error and to employ a simple FFT algorithm
without any modification is developed. Numerical
examples show the robustness of the procedure.
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